## Chapter 1 Introduction to the Configuration Software EASY

This Chapter describes the basic functions and characteristics of EASY, the industrial control configuration software (referred to as EASY below).

It describes in details the system architecture and the functions of each component, which helps the user better understand the general picture of EASY. Besides, it describes the hardware and software requirements, installation process, and operational environment for the operation of EASY.

#### 1.1 Overview

EASY is a cofiguration software developed on the supervisory computer of the the EASY Human-Machine Interface (HMI). It collects real-time data, and processes it using multiple technics, such as animation display, alarming, process control, real-time curve, historical curve, and report output, with the help of which solutions are provided for solving real project issues.

EASY combines the functions of the previous configuration software and HMI, and thus is more powerful than the ordinary touch screen, and more widely applied in the automation field.

EASY has the following basic characteristics and functions:

Simple and flexible visual operation interface

EASY adopts the visual development interface – windows to display the system operation graphics, which makes the configuration process simple, direct, and flexible. You can use the default system architecture, or configure your own graphical interfaces according to your needs. Various types and styles of graphical interfaces are available for your selection.

Rich and vivid multimedia graphics

EASY provides real-time feedback to the operator regarding the system operation status, performance, and exception alarms in multiple forms such as graphics, symbols, reports, and curves.

Changes in the graphic size and color, flashing brightness, and graphic moving and rotating all enhance the dynamic visual effects. The animation effects can be realized by setting the properties of the graphic components and symbols.

Besides, EASY provides various WINDOWS programming controls, which makes programming easier for programmers.

• Powerful network capabilities

EASY supports multiple network architectures, such as those based on TCP/IP, Modem, and RS-485/RS-232.

• Various alarming functions

EASY provides various ways of alarming, supported by a rich variety of alarm types and flexible alarm processing functions. This not only makes the alarm setting more convenient, but also realizes the real-time system reflection and alarm information printing.

Besides, EASY keeps records of all alarm information and responses, which ensures to a great extent safe and reliable operation on the site.

• Real-time database, which makes the customized configuration much easier The real-time database is a centralized data processing center. It is the core of the whole system, and is shared by various system parts and their functional components. Each part or component of the system inputs and exports data to and from the database separately, and each has its own error control system. During the configuration of an application system, each part can be configured and created independently; while all of the parts exchange data through the database and work interrelatedly during the whole system operation.

• Stable and reliable data management through database

EASY uses the dedicated database to keep all of the data, instead of using files for data storage.

During the configuration, the system designer needs to create a database manually. However, during the system operation, a database is generated automatically to keep and process all system data and alarm information.

The adoption of database for data storage and processing enhances the system reliability and operation efficiency. Besides, it facilitates other application software systems for directly processing the data stored in the database.

Distributed control and management of the industrial control system
 In consideration of future development tendency of the industrial control system,
 EASY makes full use of the currently popular DCCW (Distributed Computer
 Cooperator Work) technnology, to make sure that the data collecting devices and
 workstations distributed in different sites can cooperate with each other. This allows
 the various work stations to exchange real-time data through the EASY system, and
 thus ahieves the distributed control and management of the industrial control system.

In summary, EASY is a powerful and simple configuration software. Even ordinary engineers can easily learn and master the designing and operation of most projects after a short period of training. In addition, EASY manages to focus on solving project issues, bypassing complicated hardware and software obstacles. In a word, EASY can always come out with highly professional industrial control monitoring systems of high performance and reliability which suit the particular project needs and characteristics.

## 1.2 System Components

After the EASY software is installed, a program group named **EASY Industrial Control Software** will be generated in **Programs** of the **Start** menu.

This program group includes shortcuts for the following applications:

• **Project Manager**: The shortcut for EASY Industrial Control Software Project Manager. It has the functions of project management, database management, control blocks, and project uploading and downloading.

• Ladder Diagram Editor: The shortcut for the soft PLC ladder diagram development program.

• **Graphic Interface Editor**: The shortcut for the HMI configuration program. It has the configuration interface development system embedded.

• **Historical Data Converter**: To maximally compress the data volume contained in the HMI and store the historical data the most, the EASY system stores the historical data in a DAT file. You can download this file from the HMI, and then use this **Historical Data Converter** to convert the data into an Excel file.

• **Commissioning Output Background**: You can add printing commissioning information into the dynamic script. This printing commissioning information will be exported to the commissioning window of **Commissioning Output Background**.

• **Real-Time Data Monitoring**: This tool helps you query and modify the data stored in the real-time database of the HMI.

## 1.3 System Architecture

The EASY system architecture consists of three parts: configuration environment, simulated operational environment, and operational environment.

The configuration environment and simulated operational environment combined can be considered as a complete set of software tools. It can run on the PC, and you can customize the system components according to your needs. It is qualified enough to help you design and configure your own projects, and accomplish function testing as well.

The operational environment is an independent system. It can only run on the HMI. It

processes the project configuration according to your customization, and fulfills the goals and functions of your configuration designing. The operational environment does not mean anything by itself; its meaning is realized by configuration projects, namely, the configuration of the user application system. Once the configuration is done and the configured project is downloaded to the operational environment of the Programmable Logic Controller (PLC) via Ethernet, the project can run independently on the HMI without any interference of the configuration environments, which makes the control system reliable, real-time, accurate, and secure.

### Real-Time Database - Core of EASY

The real-time database can be considered as a data processing center. Besides, it also carries out the function of public data exchange.

EASY uses the real-time database to manage all the real-time data. It takes in the real-time data collected by the external device into the real-time database, which then transfers the data to the data variables correspondent to various configuration interfaces of the system.

The real-time database automatically implements the alarm processing and saving of the real-time data. After that, it accordingly sends the related information to the other parts of the system in the form of events to trigger the related events for real-time handling.

Therefore, the data units stored in the real-time database are not only values of the variables, but also characteristics (or properties) of the variables and operating methods (such as alarm properties analyzing, alarm processing, and saving). The encapsulation of values, properties, and methods together is called a data object.

The real-time database uses exactly the object-oriented technology to provide services to the other parts of the system; for example, the data exchange between the various functional compoents of the system.

## 1.4 System Requirements

Hardware Requirements

- Hardware: Pentium PIII 500 or higher IBM PCs or compatible PCs.
- Memory: 64MB the minimum, and 128MB recommended.
- Monitor: VGA, SVGA, or any other graphics adapter which supports the running of the desktop operating system. The minimum request is to support 256 colors.
- Mouse: Any mouse which can be used on a PC.
- Communication: RS-232C
- Operating system: Win2000/WinNT4.0 (patch 6)/Win XP English version

## Software Requirements

EASY can run in the following operating systems:

- Microsoft Windows NT Server 4.0 (SP3) or higher versions
- Microsoft Windows NT Workstation 4.0 (SP3) or higher version
- Microsoft Windows 95, 98, Me, 2000 (IE5.0 recommended for Windows 95) or higher versions

## 1.5 System Installation

The EASY software is stored on the disk. After you insert the disk into the CD/DVD drive of your PC, the installer **setup.exe** will start running atomatically, and initiate the EASY installation wizard.

To install EASY, please follow the steps below (Take WinXP installation for example; same installation procedure for WinNT4.0 and Win2000):

- 1) Start the PC.
- 2) Insert the EASY installation disk into the CD/DVD drive.

The installer **EASYSoftware.exe** will start running automatically, as shown below in Figure 1.1. (You can also double-click on the **EASYSoftware.exe** file to initiate the installation.)





3) Click on the Next button, and you will see the user information dialog box, as

shown below in Figure 1.2.

Type in the information for **Username** and **Company**. Click on the **Back** button to go back to the previous dialog box, and click on the **Cancel** button to exit the installation.

| 🙀 Easy - InstallShield Wizard             | ×            |
|-------------------------------------------|--------------|
| Customer Information                      | 4.           |
| Please enter your information.            |              |
| User Name:                                | - 5          |
|                                           |              |
| Organization:                             | e            |
|                                           | D            |
|                                           |              |
| Install this application for:             |              |
| Anyone who uses this computer (all users) |              |
| Only for <u>m</u> e (YImF)                |              |
|                                           |              |
| InstallShield                             |              |
| < Back                                    | ext > Cancel |

Figure 1.2

4) Select the installation path for EASY.

After you confirm the user registration information, the **Destination Folder** dialog box will be displayed for you to select the installation path, as shown in Figure 1.3. This dialog box tells you in which path the EASY software will be installed. The default path is **C:\Program Files\EASY\EASY Industrial Control Software\**. Click on the **Change** button to install EASY in another path.

| 👸 Easy -                      | InstallShield Wizard                                                                          | × |
|-------------------------------|-----------------------------------------------------------------------------------------------|---|
| <b>Destinati</b><br>Click Nex | ion Folder<br>xt to install to this folder, or click Change to install to a different folder. |   |
|                               | Install Easy to:<br>C:\Program Files\Easy\Easy\<br>Change                                     |   |
|                               |                                                                                               |   |
| InstallShield -               | < <u>B</u> ack <u>N</u> ext > Cancel                                                          |   |

Figure 1.3

The installer will create a destination folder in the selected path. The folder name is **EASY Industrial Control Software**.

You can always click on the **Back** button to make changes. Otherwise, click on the **Next** button to continue the installation or the **Cancel** button to exit the installation.

5) Select the installation type, as shown in Figure 1.4.Select the installation type that best suits your needs.

| j <mark>8</mark> Easy - In         | stallShield Vizard 🗙                                                                                               |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <b>Setup Type</b><br>Choose the se | stup type that best suits your needs.                                                                              |
| Please select                      | a setup type.                                                                                                      |
| ⊙ <u>T</u> ypical                  | All program features will be installed. (Requires the most disk space.)                                            |
| O <u>M</u> inimal                  | Minimum required features will be installed.                                                                       |
| Cu <u>s</u> tom                    | Choose which program features you want installed and where they will be installed. Recommended for advanced users. |
| InstallShield ———                  | < <u>B</u> ack <u>N</u> ext > Cancel                                                                               |

Figure 1.4

After you select the installation type, click on the **Next** button. And the following ready-for-installation window, as shown in Figure 1.5, will be displayed. Click on the **Install** button to start the installation.

| jÿEasy - InstallShield Vizard 🛛 🔀                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Ready to Install the Program The wizard is ready to begin installation.                                                              |
| If you want to review or change any of your installation settings, click Back. Click Cancel to exit the wizard.<br>Current Settings: |
| Setup Type:                                                                                                                          |
| Typical                                                                                                                              |
| Destination Folder:                                                                                                                  |
| C:\Program Files\Easy\Easy\                                                                                                          |
| User Information:                                                                                                                    |
| Name:                                                                                                                                |
| Company:                                                                                                                             |
| InstallShield Cancel                                                                                                                 |

Figure 1.5

6) Installation started, as shown in Figure 1.6.

| 👸 Easy -        | InstallShield Wizard                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installing      | J Easy                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ine prog        |                                                                                          | Contraction of the local division of the loc |
| 15              | Please wait while the Install5hield Wizard installs Easy. This may take several minutes. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Status:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Copying new files                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | (****************                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| InstallShield - |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | < <u>B</u> ack Next >                                                                    | Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Figure 1.6

7) Installation complete, as shown in Figure 1.7. Click on the **Finish** button to exit the installation wizard.

The EASY software will be initiated for the first time.



Figure 1.7

## Chapter 2 Getting Started with EASY

This chapter takes a project as an example to explain comprehensively the configuration process, operation methods, and function implementation of EASY. It provides you a gneral picture regarding what EASY is, how it works, and how to use it in a short period of time.

## 2.1 General Procedure for Creating a Project

The general procedure for setting up a project is listed as follows:

- 1) Create a blank project.
- 2) Create a database, and add real-time data into the database.
- 3) Configure devices on the site.
- 4) Design the graphic interface.
- 5) Set the dynamic properties of the interface to achieve rich animation effects.
- 6) Compile the project, and run it in the offline simulated einvironment.
- 7) Download the project.

One thing to be noted, the steps stated above do not follow a strict sequence. As a matter of fact, the implementation of them might often be overlapped.

Therefore, it is recommended to take the following three aspects into consideration while configuring a project using the software interface development system:

• What kind of graphic interfaces are expected by the user for whom the interfaces are developed?

In other words, how to use abstract graphic interfaces to simulate real industrial sites and the industrial cotrol (IC) devices installed on each site?

- What data variables can be used to describe the various properties of IC objects? A database will be created for a project. But how to map database variables to various properties of IC objects; for example, temperature and pressure.
- How to link the data and components in graphic interfaces? That is to say, how to make components in graphic interfaces reflect the operation status of devices installed in real industrial sites, and how the operator types in device control commands?

## 2.2 Creating a Project

This section focuses on describing the simple and easy-to-learn procedure for the beginner to create a project using the EASY software.

## 2.2.1 Creating a Blank Project

1) In the Start menu, go to Programms and select Project Manager.

The **EASY Industrial Cotrol Software Development Environment** window will be displayed, as shown in Figure 2.1.



Figure 2.1

 Click on the **Project** menu, and then the **Create a Project** submenu, as shown in Figure 2.2.



Figure 2.2

| Project Proper               | ty                 | × |
|------------------------------|--------------------|---|
| Please Setting H             | Project Property   |   |
| Project Name:                | test               |   |
| Project<br>Description:      | 测试工程               |   |
| НМІ Туре:                    | LC084E             |   |
| Project Path:                | G:\test\           |   |
| Default Slave II<br>Address: | P 192. 168. 1. 100 |   |
|                              | 🖌 OK 🎽 Cancel      |   |



- **Project Name**: Type in the name of the project in the text box behind **Project Name**. This project name is also the path name for this project.
- **Project Description**: Type in any description information in the text box behind **Project Description**.
- **HMI Model**: Click on the arrow down button to select the HMI model. EASY provides 14 models of three series for your selection. If you are a developer, please select the HMI model accordingly.
- Project Path: Click on the Delta button, and then select a valid path in the Select the Path dialog box.
- **Default Slave IP Address**: The default IP address of the HMI provided for user interaction. As a developer, after you type in the IP address here, you do not need to type in the IP address again for future project downloading.

After you type in all the above project information, click on the **OK** button, and a new project is created.

3) To save the project, click on the **Project** menu and then the **Save a Project** submenu, as shown in Figure 2.4.



Figure 2.4

## 2.2.2 Adding Real-Time Data

 In the Project Manager tree on the left side of the window, right-click on the Real-Time Database node and select Create a Database from the pop-out menu, as shown in Figure 2.5.

| 🛓 EASY Project Lanag                    | ger – test             | _easy            |            |        |          | $\mathbf{X}$ |
|-----------------------------------------|------------------------|------------------|------------|--------|----------|--------------|
| Project( <u>P)</u> View( <u>V</u> ) Too | ol( <u>T</u> ) Configu | ration(⊆) Help(Ŀ | <u>+</u> ) |        |          |              |
| 🌮 🛄 🤝                                   | 0 🖻                    |                  | 🖨 😻 💈      | &.     |          |              |
| project manager                         | ×                      | data name        | data type  | length | initial  | valu         |
| 🗆 🚰 project                             |                        |                  |            |        |          |              |
| + real-time da                          | New Datab              | ase              |            |        |          |              |
| Junction blo                            | Delete Data            | abase            |            |        |          |              |
| H Ladder                                | New Data (             | Group            |            |        |          |              |
| 🔤 Real-time da                          | Delete Data            | a Group          |            |        |          |              |
| alara confi                             | Modify                 |                  |            |        |          |              |
| 🖪 redundant confi                       | guration               |                  |            |        |          |              |
| + / device configur                     | ation                  |                  |            |        |          |              |
| and and could                           | L ALION                |                  |            |        |          |              |
|                                         |                        |                  |            |        |          |              |
|                                         |                        |                  |            |        |          |              |
|                                         |                        |                  |            |        |          |              |
|                                         |                        |                  |            |        |          |              |
|                                         |                        |                  |            |        |          |              |
|                                         |                        |                  |            |        |          |              |
|                                         |                        |                  |            |        |          |              |
|                                         |                        |                  |            | )      |          |              |
|                                         |                        | <                |            |        | Law yest | >            |
| Add Database                            |                        |                  |            | CUR    | NUM      | 11.          |



A dialog box as shwon in Figure 2.6 will be displayed. Here you can set the

database name as **test**. You can check or uncheck the option **Synchronize this database when multiple-device communication occurs**.

| Realtime Database Setting | × |
|---------------------------|---|
| Setting                   |   |
| Database: test            |   |
| 🔽 Synchronizing Database  |   |
| V OK Cancel               |   |



2) Select the new database **test**, right-click anywhere in the right-side pane and select **Add Data** in the pop-out menu, as shown in Figure 2.7.

| 🚔 EASY Project Manager - test                                                                                                                                                                                                                                                                                                          | _easy                             |                                                                                                             |        |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------|--------|--------------|
| Project(P) View(V) Tool(I) Configur                                                                                                                                                                                                                                                                                                    | ration( <u>C</u> ) Help( <u>H</u> | o<br>🌧 🧇 堡                                                                                                  | &.     |              |
| project manager 🛛 🕹                                                                                                                                                                                                                                                                                                                    | data name                         | data type                                                                                                   | length | initial valu |
| <ul> <li>project</li> <li>real-time database</li> <li>test</li> <li>global</li> <li>Function block</li> <li>Ladder</li> <li>Parameter</li> <li>Real-time data record</li> <li>History data record</li> <li>alarm configuration</li> <li>redundant configuration</li> <li>device configuration</li> <li>module configuration</li> </ul> | data<br>data1<br>IO_test          | bit<br>long<br>array<br>New Data( <u>N</u> )<br>Delete Data( <u>D</u> )<br>Modify( <u>P</u> )<br>Batch Data |        | 0<br>0       |
|                                                                                                                                                                                                                                                                                                                                        | <                                 |                                                                                                             |        | >            |
|                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                                                             | CUR    |              |

Figure 2.7

A dialog box as shown in Figure 2.8 will be displayed. Here you can set **Data Name** to **data**, **Data Type** to **Bit**, **Data Length** to **1** (For the data type Bit, the number here refers to the number of bits, and the value range 1-8 means the data is 1-bit to 8-bit binary data; for other data types, the number here refers to the number of bytes), and **Default Value** to **0**.

| Data:          | data 🗆 🗖 Alias |
|----------------|----------------|
| Data Type:     | array          |
| Data Length:   | 1              |
| Initial Value: | 0              |
| Alias:         |                |
| Description:   |                |

Firgure 2.8

3) Add another two data with the data information listed below:

Data Name: data2; Data Type: Long; Data Length: 4; Default Value: 100. Data Name: IO\_data1; Data Type: Bit; Data Length: 1; Default Value: 0.

Figure 2.9 lists the information of the above three new data.



Figure 2.9

## 2.2.3 Configuring Site Devices

This part takes the Siemens S7-200 Series PLC for example to explain how to configure site devices.

1) Add a serial port communication link.

In the **Project Manager** tree on the left side of the window, right-click on the **Device Configuration** node, and a pop-out menu will be displayed, as shown in Figure 2.10.

| 🛓 EASY Project Manage     | r - 无标题                                            |                     |     |
|---------------------------|----------------------------------------------------|---------------------|-----|
| Project(P) View(V) Tool() | <u>T</u> ) Configuration( <u>C</u> ) Help(         | 년)                  |     |
| 🥱 🖾 🔊                     | 🙆 😒 🔁 🎱                                            | ⇔ 🨻 😫 😤 .           |     |
| project manager           | ×                                                  |                     |     |
| redundant configurat      | se<br>ated data<br>ecord<br>ord<br>tion<br>uration |                     |     |
| advice configue           | New Device Link 🔹 🕨                                | Serial Port         |     |
|                           | Delete Device Link                                 | Common Link         |     |
|                           | New Device                                         | TCP Network Client  |     |
|                           | Delete Device                                      | TCP Network Service |     |
|                           | Modify                                             |                     |     |
|                           |                                                    |                     |     |
| Add Serial Port           | 1                                                  | CUR                 | NUN |

Figure 2.10

Select Add a Communication Link and then Serial Port on the pop-out menu, a dialog box as shown in Figure 2.11 will be displayed.

| Basic Setting Serial Port Setting |
|-----------------------------------|
|                                   |
| Linkage Name: link1               |
| Scan Period(ms): 500              |
| Redundant Name: Master Link 💌     |
| Primary Linkage:                  |
| Overtime (ms): 500                |
| Status Variable: 🔎                |
| Control Variable:                 |
| Additional Param:                 |
| 🔲 Disable Linkage                 |
|                                   |
| 📝 确定 🏋 取消                         |

Figure 2.11

In the **Basic Link Info** tab, and set the **Link Name**, **Scanning Cycle**, and **Timeout** information, as shown in Figure 2.11.

In the **Serial Port Info** tab, set the following parameters for the serial port communication, as shown in Figure 2.12:

Device Name: COM1; Baud Rate: 9600; Data Bits: 8 bits; Stop Bit: 1 bit; Parity Check: Even.

| modify serial   | communication link | ×        |
|-----------------|--------------------|----------|
| Basic Setting S | erial Port Setting |          |
|                 |                    |          |
| Device:         | COM1               |          |
| Baud Rate:      | 9600 💌             |          |
| Data Bit:       | 8                  |          |
| Stop Bit:       | 1                  |          |
| Parity:         | none               |          |
|                 |                    |          |
|                 |                    |          |
|                 |                    |          |
|                 |                    | 应用(4)    |
|                 |                    | NYTH (A) |

Figure 2.12

After the above settings are complete, click on **OK** to save the configuration.

2) Add an I/O device.

In the **Project Manager** tree on the left side of the window, right-click the new link

link1, and you'll see the pop-out menu as shown in Figure 2.10.

| Device Informatio   | n                    | ×            |
|---------------------|----------------------|--------------|
| -Device Information | Setting              |              |
| Device Name:        | siemens_plc          |              |
| Device Address:     | 2                    |              |
| Device Driver:      | Simense S7 200 PLC 💌 |              |
| Manufacturer:       |                      |              |
| Product Type:       | •                    |              |
| Status Variable:    |                      | $\mathbf{P}$ |
| Additional Param:   |                      |              |
| 🔽 Disable Devic     | e                    |              |
|                     | OK Cancel            |              |

Select the Add a Device menu, and you'll see the dialog box as shown in Figure 2.13.

Figure 2.13

In this dialog box, set **Device Name** to **siemens\_plc**, **Device Address** to 2, and **Device Driver** to Siemens S7 200 Series PLC.

3) Add the data.

In the **Project Manager** tree on the left side of the window, select the new device **siemens\_plc**. Right-click in the pane on the right side of the window, and you'll see the pop-out menu as shown in Figure 2.14.



Figure 2.14

Select the **Add Data** menu, and a dialog box as shown in Figure 2.15 will be displayed.

| Device Data Sett | ing                  | ×       |
|------------------|----------------------|---------|
| -Data Setting    |                      |         |
| Data Type:       | Q                    | [       |
| Data Group:      | 0 💌                  | Ungroup |
| Data Address:    | 0.0                  |         |
| Realtime Data:   | test.IO_data1        |         |
| Status Variable: |                      |         |
| Access Type:     | Circularly reading 🔻 | [       |
| 🔲 Disable Data   |                      |         |
|                  |                      |         |
| Ľ                | OK 🏾 🌋 Cancel        |         |

Figure 2.15

The data configuration for this new I/O device is listed below:

Data Type: Q; Data Group: 0; Data Address: 0.0; Real-Time Data Name: test.IO\_data1; Access Mode: Repeat Read and Single Write.

In this way, the digital output register **Q0.0** and the variable **test.IO\_data1** in the real-time database are mapped to each other. Whatever changes on the value of **Q0.0** will be relected on the **test.IO\_data1**; similarly, when the value of **test.IO\_data1** is modified, the status of **Q0.0** will be affected as well.

After you set all the above device data, click on **OK** to save the configuration.

#### 2.2.4 Creating the Configuration Interface

In the interface development system, you can create as many interfaces as you want for each project, and generate static or dynamic interrelated graphic objects for each interface. The various types of graphic objects which compose the interfaces are actually provided by the Interface Editor of the EASY system.

EASY provides two types of controls: configuration interface controls and Windows controls. The configuration interface controls are subcategorized into basic graphic objects, such as rectangles (including incremental rectangles), lines, ovals (including circles), bitmaps, or text, and complicated graphic objects, such as buttons, trend curve windows, or alarm windows. The Windows controls include checkboxes, historical lists, and drop-down lists.

Besides, EASY provides tools for you to do the following operations on graphic objects:

- Dragging around inside the window
- Zooming in or out
- Reshaping
- Copying
- Deleting
- Aligning
- Both keyboard and mouse drawing
- Adjusting the color
- Changing the line type
- Changing the filling properties

The Interface Editor makes full use of the object-oriented technology to help you easily set up graphic interfaces. You can select the graphic objects provided by the system to generate various interfaces, just like you are building with blocks. In addition, EASY allows you to copy graphic objects among interfaces, so that you can easily use the developed results.

To create an interface, please follow the procedure below:

1) In the Project Manager window, select the HMI node and then the Interface child node. Right-click inside the list pane on the right side and select Add an Interface. In the Interface Setting dialog box as shown in Figure 2.16, set Interface Name to test, Title to Test Interface, File Name to testwnd, and check the options Display at the startup of the program and Automatically create files.

| Vindow Se | etting 🗙                                         |
|-----------|--------------------------------------------------|
| _Window ] | Informati on                                     |
| Name:     | test                                             |
| Title:    | 测试画面                                             |
| File Nam  | e: testwnd. xml                                  |
| 🔽 Start   | tup Showing 🔽 Create File Auto 🥅 Disable Showing |
|           | V OK K Cance                                     |

Figure 2.16

Click on **OK**, and an interface file will be generated, as shown in Figure 2.17.



Figure 2.17

2) Double-click on the newly created **test** interface file on the right side, and the Interface Editor software window will be displayed, as shown in Figure 2.18.



Figure 2.18

- 3) In the tools set on the left side of the window, click on the dynamic text tool and drag across in the editing pane to create a text graphic component. The default text set by the system is **text**.
- Select this text graphic component, and set the text properties in the property list on the right side of the window, such as **Text Color**, **Text Contents**, **Text Font**, etc. For example, you can change **Text Contents** to **0**.

- 5) Similarly, click on the incremental oval tool from the tools set on the left to create an incremental oval.
- 6) Or click on the data input tool to create a data graphic component.
- 7) Select File > Save to save this interface, as shown in Figure 2.19.





### 2.2.5 Setting Dynamic Properties for the Interface

Defining animation links is to establishing connection between graphic ojbects in the interface and data variables in the database. On one hand, any changes of the variables will be vividly reflected by the animation effects of the graphic objects. On the other hand, the software developer can change properties of the graphic objects so as to change values of the data variables.

EASY Interface Editor provides 21 various types of animation links, which are categorized as follows:

| Property Changes          | Changes in line properties, filling properties, and text color |
|---------------------------|----------------------------------------------------------------|
| Location and Size Changes | Filling, zooming, and horizental and vertical positioning      |
| Value Output              | Digitals, analogs, and customized expressions                  |
| Special Characteristics   | Flashing and visibility                                        |
| Command Languages         | For pressing down and releasing a button                       |

Multiple animation links can be defined for each graphic object to form complicated animation effects, so as to meet various display needs during the site operation.

1) Select the text graphic component created in section 2.2.4. In the Property List

on the right side of the window, click on the small rectangle button  $\square$  on the right most side of the **Text** property, and the **Dynamic Text Property Settings** window as shown in Figure 2.20 will be displayed. Click on the **Variable** button, and select the corresponding variable in the HMI database as shown in Figure 2.21.

| Dynamic Text Property Setting                                     | × |
|-------------------------------------------------------------------|---|
| Choose Dynamic Froperty Type<br>© Expression © Dynamic Script     |   |
| Variable or \$test.data2<br>Expression:<br>Choose Expression Type |   |
|                                                                   |   |
| Integaral Num: 0 Decimal Num: 2                                   |   |
| 🔎 Variable 🔎 Function 🛛 🞻 OK 🏾 🌋 Cancel                           |   |

Figure 2.20

| HIII Database                                                                                                                  |                           |                |                | ×    |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|----------------|------|
| Realtime database<br>testbas1<br>test_data1<br>system<br>redundancy<br>hmi_system_set<br>printer<br>syskeyboard<br>MI database | Database name<br>testbas1 | Data name data | Type<br>string | Desc |
|                                                                                                                                |                           |                |                |      |
| ок                                                                                                                             | <                         | 🚆 Cancel       | 1              | >    |

Figure 2.21

Click on **OK** to save the property settings.

2) Select the oval graphic component created in section 2.2.4. In the **Property List** on the right side of the window, click on the small button on the right most of the **Start** 

**Color** property, and the **Dynamic Color Property Settings** window as shown in Figure 2.22 will be displayed. Set **Dynamic Property Type** to **Digital**, and set the color for both **On** and **Off** under **Digital Settings**. Click on the **Variable** button and select the digital variable from the HMI database as shown in Figure 2.23.

| Dynamic Color              | Property Setting | ×                                    |
|----------------------------|------------------|--------------------------------------|
| Choose Dynamic H           | roperty          |                                      |
| O Digital                  | C Analog         | C Custom Expression 🕜 Dynamic Script |
| Variable or<br>Expression: | \$test. data     | Ariabl Bunctic                       |
| 🗉 Digital set              |                  |                                      |
| Open                       | #0000FF          |                                      |
| Close                      | #000000          |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            | ОК               | X Cancel                             |

Figure 2.22

| Realtime database Databa | se name 🛛 Data name | Type | Desc |
|--------------------------|---------------------|------|------|
| 🧳 system 🛛 🛛 redund      | ncv MasterBun       | hit  |      |
| A redundency redund      | ancy SlaveRun       | bit  |      |
| The sustantiancy         | -                   |      |      |
| Mar Iuni_system_set      |                     |      |      |
| printer                  |                     |      |      |
| keyboard                 |                     |      |      |
| ibase                    |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
|                          |                     |      |      |
| 1                        |                     |      |      |
|                          |                     |      |      |

#### Figure 2.23

Click on File and then Save to save the property settings.

3) Select the oval graphic component created in section 2.2.4. In the Property List on the right side of the window, click on the **Press** event editing box, and the Event Editing window as shown in Figure 2.24 will be displayed. Type in the event code **\$test.data=!\$test.data;** and click on **OK**. (**Caution**: According to the syntax of the C language, a semi-colon is compulsory at the end of the command line.)

| Event Edit                  |            |      | ×        |
|-----------------------------|------------|------|----------|
| Event Code                  |            |      |          |
| \$test. data=!\$test. data; |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
|                             |            |      |          |
| ,                           |            |      |          |
| 🔎 Variable                  | 🔎 Function | 🖌 ОК | X Cancel |

Figure 2.24

4) Select the data input graphic component created in section 2.2.4. In the **Property List** on the right side of the window, click in the **Variable Name** property editing box, and select the corresponding variable **test.IO\_data1** from the HMI database, as shown in Figure 2.25.



Figure 2.25

5) Click on File and then Save to save the event code.

6) Exit the Interface Editor software, and it will take you back to the main **Project Manager** interface.

2.2.6 Compiling a Project and Project Simulation

1) Select **Project** and then **Save a Project** to save the configured project.

2) Select **Tools** and then **Compile a Project**, and you will see a window as showin in Figure 2.26. Click on the **Start Compiling** button.

3) Click on the **Exit** button after the compiling is complete.

| MARKAN                                                                                                      | × |
|-------------------------------------------------------------------------------------------------------------|---|
| Compile Choice                                                                                              |   |
| Additional Define:                                                                                          |   |
| Additional H File:                                                                                          |   |
| Additional Source<br>File and<br>Lib (Windows):                                                             | 2 |
| Additional Source<br>File and Lib(HMI):                                                                     |   |
| LCGen Version:1.8.0, Copyright Easy Inc(2004-2008).<br>Use of deprecated SAXv1 function ignorableWhitespace |   |
|                                                                                                             |   |

Figure 2.26

4) Select Tools and then Offline Simulation, and the configuration interface as shown in Figure 2.27 will be displayed. In this interface, the text **100** reflects the data value of **data2**. Click on the oval graphic component, and you can see the color changes. Click on the **Data Input** box, type in the data **0** or **1**, and you can see the graphic component on the PLC closes and then opens as the value of the digital output point Q0.0 changes from 0 to 1.



Figure 2.27



Figure 2.28

### 2.2.7 Downloading a Project

EASY supports project downloading through Ethernet. Before downloading a project, please make sure that the PC and the HMI communicate well over the network.

1) Set the IP address of the HMI.

Press down the left top corner, right top corner, and left bottom corner of the HMI sequentially, and the **System Settings** window as shown in Figure 2.29 will be displayed. Set the IP address of the network card based on the the network port used by the HMI. The system default setting is 192.168.1.10.

|                       | Network 1                  | Network 2                |          |
|-----------------------|----------------------------|--------------------------|----------|
| IP: 19                | 2 . 168 . 0 . 10           | IP: 192 · 168 · 0        | . 10     |
| Netmask: 25           | 5 . 255 . 255 . 0          | Netmask: 255 . 255 . 255 | . 0      |
| Route: 19             | 2 . 168 . 0 . 1            | Route: 192 . 168 . 0     | . 1      |
|                       | Display                    | Serial                   |          |
| Brightness            | 100 %                      | COM2: 🔿 RS232 🔶 RS485    |          |
| ScreenSaver<br>Delay: | 0 Second (0                | COM3: 🔿 RS232 🔴 RS485    |          |
| Time                  | 2009-07-09 09:42:52        | Display Timeout          |          |
| Time Address          | a data . Paraman (ICP) Pat | sat Sama                 | <b>V</b> |

Figure 2.29

2) In the PC, add an IP address of the same network segment as that of the HMI. Make sure that you can ping through the IP address of the HMI from the PC.

3) Select **Tools** and then **Download a Project**, and you will see the **Download a Project** window as shown in Figure 2.30. Type in the IP address of the HMI in the text box behind **Slave IP Address**.

4) Click on the **Generate Downloading Package** button to generate a downloading package.

5) Click on the **Download** button to start downloading the project.



Figure 2.30

# Chapter 3 Real-Time Database

## 3.1 Overview

The real-time database is the core of EASY. During the system operation, the actual manufacturing status of various sites are expected to be reflected vividly on the screen through various animation effects. Meanwhile, the commands entered into the PC by the engineer are expected to be delivered to the sites speedily. The ladder diagram, the function control program, and the HMI all exchange data through the real-time database. In a word, the real-time database works as the bridge between the supervisory computer and the PLC.

Besides, the real-time database also functions for data communication with external I/O devices. Different from the historical database, all the data in the real-time database are real-time data, namely, current values. The real-time database stores current values of variables, including system variables and user-defined variables.

## 3.2 Basic Concepts

#### Real-Time Database

The real-time database is a set of real-time data. Multiple real-time databases are allowed in EASY. The main advantage of this is that the same data can be kept in various real-time databases. In other words, the various real-time databases can function together to increase the system efficiency.

Data Group

Various data groups can be defined in a real-time database. The data of the same category can be grouped together into one data group for better management and more efficient inquiry. Data and sub-data groups can be defined in data groups to establish hierarchical data structure.

#### Real-Time Data

The real-time data defines all the data used by the HMI. The real-time data can belong to a real-time database or a data group. When referencing, the real-time data is referenced as "Name of the real-time database.Name of the real-time data". Therefore, the real-time data of the same database cannot share the same name (even though they are of different data groups).

However, the real-time data can use alias. EASY supports data access in the real-time database by alias.

## 3.3 Data Types

Types of the data in the real-time database are similar to those of variables used in the programming language – the C language. The data types are defined based on the syntax of the C language, and thus meet the basic programming requirements and needs. Based on this similarity, the real-time data can be also called variables.

There are the following types of data in the real-time database:

### • bit

The bit data can be used for digitals. It usually has one bit, and values 0 and 1.

EASY allows the bit data which has more than 1 digit; the data in EASY can be 1

to 7 digits.

Note: When adding the bit data, the data length is the number of digits.

• char

Similar to the signed char variable in the C language. This type of data is the signed single-byte data.

uchar

Similar to the unsigned char variable in the C language. This type of data is the unsigned single-byte data.

short

Similar to the short variable in the C language. This type of data is signed double-byte data.

## ushort

Similar to the unsigned short variable in the C language. This type of data is unsigned double-byte data.

## Iong

Similar to the long variable in the C language. This type of data is signed double-byte data.

ulong

Similar to the unsigned long variable in the C language. This type of data is unsigned double-byte data.

float

Similar to the float variables in the C language. This type of data is single-precision floating point data.

double

Similar to the double variable in the C language. This type of data is double-precision floating point data.

#### string

Similar to the character array in the C language. This type of data are character strings with specific meaning. You can customize the data length. However, similar to the C language, all string variables end with **\0**. Therefore, the actual data length should be the data length minus 1.

#### array

Similar to the array variable in the C language. The data length is the number of data bytes. At present, this type of data can only be used for the script for interface configuration and external C language programs.

## 3.4 Data Definitions

### 3.4.1 Naming Conventions

The naming conventions for the database, data array, and data are as follows:

1) Same naming conventions for the identifier of the C language, but with the Chinese language supported. That is, the name starts with a letter, the underscore, or a Chinese character, and then is followed by letters, numbers, the underscore or Chinese characters.

2) The database name, data array name, and data name are all case sensitive.

3) Names for data arrays and data of the same database must be different.

4) The following database names are reserved for the system internal use only, and thus are not available for user selection:

system, redundancy, hmi\_system\_set, printer, syskeyboard, redund\_vars, and all database names starting with EASY.

### 3.4.2 Definition of the Database

#### 3.4.2.1 Creating a Database

To create a database, do as follows:

1) In the **Project Manager** window, right-click on **Real-Time Database**, and you will see a right-click menu as shown in Figure 3.1.





2) Select Add a Database, and you will see a dialog box as shown in Figure 3.2.

| Realtime Database Setting | × |  |  |
|---------------------------|---|--|--|
| Setting                   |   |  |  |
| Database: testbas1        |   |  |  |
| 🔽 Synchronizing Database  |   |  |  |
| V OK Cancel               |   |  |  |

Figure 3.2

- 3) Type in a data as the database name; for example, testbase1.
- 4) Click on OK.

And a database named **testbase1** is created. Make sure to check the **Synchronize this database when multiple-device communication occurs** option, so that the data in the database **testbase1** will be synchronized when redundant communication occurs between multiple HMIs.

#### 3.4.2.2 Deleting a Database

To delete a defined database, do as follows:

1) On the left side of the **Project Manager** window, right-click on a database you want to delete, as shown in Figure 3.3.





2) Select **Delete a Database**, and you will see a dialog box as shown in Figure 3.4.





3) Click on **OK**, and the selected database will be deleted.

### 3.4.3 Definition of the Data Group

#### 3.4.3.1 Creating a Data Group

After creating a database, you can categorize the data into different data groups. Do as follows:

1) Right-click on the created database called **database1**, as shown in Figure 3.5.





2) Select Create a Data Group, and you will see a dialog box as shown in Figure

| Setting Data Group     | X |
|------------------------|---|
| Setting                | 1 |
| Data Group: test_data1 |   |
|                        |   |
|                        |   |
| V OK Cancel            |   |



Type in a name for the data group test\_data1, and click on OK.
 A data group called test\_data1 is created.

### 3.4.3.2 Deleting a Data Group

To delete a data group, do as follows:

1) Right-click on a data group, for example, test\_data1, as shown in Figure 3.7.



Figure 3.7

2) Select Delete a Data Group, and you will see a dialog box as shown in Figure 3.8.





- 3) Click on OK, and then the data group **test\_data1** is deleted.
- 3.4.4 Definition of the Real-Time Data Variable

### 3.4.4.1 Adding Real-Time Data

To add data into a real-time database, do as follows:
On the left side of the **Project Manager** window, select the database created earlier **database1**, and then right-click in the list pane on the right side of the window.

To add data into a data group (The data in the data group and that in the database must not share the same name.), do as follows:

- 1) Select the database test\_data1 from the left side of the Project Manager window.
- 2) Right-click in the list pane on the right side of the window, as shown in Figure 3.9.

| New Data( <u>N</u> )    |  |
|-------------------------|--|
| Delete Data( <u>D</u> ) |  |
| Modify( <u>P</u> )      |  |
| Batch Data              |  |

Figure 3.9

3) Select Add Data, and you will see a dialog box as shown in Figure 3.10.

| Data:          | data     | 🗆 Alias |
|----------------|----------|---------|
| Data Type:     | string 💌 |         |
| Data Length:   | 1        |         |
| Initial Value: | 0        |         |
| Alias:         |          |         |
| Description:   |          |         |
|                |          |         |



- 4) In Figure 3.10, set the data properties according to the definitions below:
  - Data Name: Unique name for a data variable used in an application. Data variables of the same database must not share the same names. Names of data variables are case sensitive. Click anywhere in the text box to edit the property; for example, to type in the variable name.
  - **Data Type**: To define the type of the data. Click on the arrow down button to select a data type from the drop-down list.
  - **Data Length**: The data length varies from variable to variable. For example, for a long data, you can define the data length to four bytes. You can define the data length for the other variables similarly.

- **Default Value**: To define the default value of variables. The default value is necessary in many situations. For example, when you design a ladder diagram, you need to define a timer; the timer timing uses the default value.
- Alias: To give the real-time data in the real-time database another name as identifier. When you refer to this alias, you are actually refering the original data. To use the alias, check the Alias checkbox, and type in the alias of the data (namely, the original data name). Click on OK, and a real-time data is created in the database.

#### 3.4.4.2 Deleting Real-Time Data

To delete real-time data, do as follows:

 Right-click on the real-time data you want to delete, and you will see a right-click menu as shown in Figure 3.11.



Figure 3.11

2) Select Delete Data, and you will see a dialob box as shown in Figure 3.12.



Figure 3.12

3) Click on **OK**, and the real-time data will be deleted.

#### 3.4.4.3 Modifying Data

To modify real-time data, do as follows:

 Right-click on the real-time data you want to modify, and you will see a right-click menu as shown in Figure 3.13.

| New Data( <u>N</u> )    |
|-------------------------|
| Delete Data( <u>D</u> ) |
| <br>Modify( <u>P</u> )  |
| Batch Data              |
|                         |

Figure 3.13

2) Select Modify, and you will see a dialog box as shown in Figure 3.14.

| Data Setting   | ×              |
|----------------|----------------|
| Data Setting   |                |
| Data:          | data 🗆 🗆 Alias |
| Data Type:     | string         |
| Data Length:   | 1              |
| Initial Value: | 0              |
| Alias:         |                |
| Description:   |                |
|                |                |
|                | 0K             |
| <u> </u>       |                |



3) Do the modifications, and click on **OK** to save them.

#### 3.4.4.4 Adding Batch Data

You can add a batch of data in the real-time database at a time, which saves the trouble of repeatedly defining data.

Names of the batch data must follow the following naming conventions:

The names of all the data in the batch must start with the same prefix and end with continuously incremental integers.

This section takes adding a batch of 7 data **test5** to **test11** into the database for example, to explain how to add batch data.

1) On the left side of the Project Manager window, select the real-time database

into which you are going to add the batch data, and then right-click in the list pane

on the right side of the window, as shown in Figure 3.15.



Figure 3.15

2) Select **Batch Data**, and you will see a dialog box as shown in Figure 3.16.

| Batch | Data Set   | ting |    |        |         | × |
|-------|------------|------|----|--------|---------|---|
| Data  | Setting    |      |    |        |         |   |
| Data  | :          | test |    |        | 🗌 Alias |   |
|       | From 5     |      | Го | 11     | _       |   |
| Data  | Туре:      | char |    | •      |         |   |
| Data  | Length:    | 1    |    |        |         |   |
| Init  | ial Value: | 0    |    |        |         |   |
| Alia  | s:         |      |    |        |         |   |
| Desc  | ription:   |      |    |        |         |   |
|       | Ľ          | OK   | 2  | Cancel |         |   |

Figure 3.16

The parameters in Figure 3.16 are described as follows:

- **Data Name**: The common prefix for the names of the batch data. It is **test** in this example.
- From ... To ...: Start and end values of the integer suffix for the names of the batch data. They are 5 and 11 in this example.

For descriptions about the other parameters, see section 3.4.4.1 Adding Real-Time Data.

# 3.5 Data Referencing

The data defined in the real-time database can be referenced directly in the interface configuration script.

Follow the rules below for data referencing:

1) If the data is not a parameter of a system function, refer to the data as **\$Database** 

Name.Data Name. For example, you can refer to the data data1 of the database test as \$test.data1.

 If the data is a parameter of a system function and the data is a string, refer to the data as **Database Name.Data Name**. (To be noted, no \$ in the front.) For example, **data\_input\_window**("test.data1", "test", 0, 100, 0).

# 3.6 System Variables of EASY

EASY has some internally defined data variables which are called system variables of the EASY configuration software. You can directly use these system variables for configuration. You can also use them for accessing or modifying the EASY internal system parameters, so as to implement some specific functions.

# Chapter 4 Interface Database

# 4.1 Overview

Besides the real-time database, the EASY system also provides the interface database. Different from the real-time database, the data in the interface database can only be used during interface configuration; they cannot be used in the ladder diagram, real-time or historical records, alarms, or device configuration.

Data types and naming conventions for the interface database are the same as for the real-time database. For details, please see sections 3.3 and 3.4.1.

The interface database contains two types of data, real-time associated data and user-defined data, which will be described in details in the following sections.

# 4.2 Real-Time Associated Data

The real-time associated data must be associated with a certain data in the real-time database. There is one-to-one mapping relationship between the real-time associated data and the original real-time data to which it is associated. In other words, any modifications on the real-time associated data will be reflected on the original real-time data in the real-time database, and vise versa.

Defining the real-time associated data provides the following two advantages:

1) Defining a cycle time for each real-time associated data.

Usually, the system obtains all the real-time data from the real-time database and uploads them to the interface according to the default cycle time. In the EASY system, you can define the cycle time through the system variable **system.HmiDefCycleTime**, and the default cycle time is 500ms.

However, some data might have special characteristics. For example, some data might be changing fast, and thus needs to be refreshed and then uploaded to the interface more frequently. In this case, you can define a cycle time especially for these data; the system then refreshes the value of such data in the real-time database and uploads the data to the interface at the defined cycle time. Meanwhile, the refreshing and uploading for the other data still follow the default cycle time.

2) Accessing the data with the data name only, instead of with the database name as well.

For details, see section 4.4 Data Referencing.

## 4.2.1 Adding Data

To add a real-time associated data, do as follows:

1) On the left side of the **Project Manager** window, select **Real-Time Associated Data**, and right-click in the list pane on the right of the window, as shown in Figure 4.1.





2) Select Add Data, and you will see a dialog box as shown in Figure 4.2.

| IO Data Setting                                                                          | × |
|------------------------------------------------------------------------------------------|---|
| IO Data Setting<br>Data Name:<br>Database Name:<br>Variable Name:<br>Refresh Period: 500 | 2 |
| V X Cancel                                                                               |   |

Figure 4.2

In Figure 4.2, set the data properties according to the definitions below:

- Data Name: Unique name for identifying a data variable used in an application. The data variables of the same database must have different names. Names of data variables are case sensitive.
- **Database Name**: Name of the database which contains the real-time data to which the real-time associated data is associated.
- Variable Name: Name of the data variable in a real-time database to which the real-time associated data is associated.

You can also click on the *P* button on the right side to select the database name and variable name of the data to which the real-time associated data is associated.

• **Cycle Time**: To define the cycle time for refreshing the real-time associated data.

# 4.2.2 Deleting Data

To delete a real-time associated data, do the following:

1) Right-click on the real-time data you want to delete, and you will see a right-click menu as shown in Figure 4.3.





2) Select Delete Data, and you will see a dialog box as shown in Figure 4.4.

| LCPDev | ×                                     |
|--------|---------------------------------------|
| ⚠      | Are you sure to delete current data ? |
|        |                                       |



3) Click on **OK**, and the selected real-time associated data is deleted.

#### 4.2.3 Modifying Data

To modify a real-time associated data, do as follows:

1) Right-click on the real-time data you want to modify, and you will see a right-click menu as shown in Figure 4.5.



Figure 4.5

2) Select Modify, and you will see a dialog box as shown in Figure 4.6.

| IO Data Setting   | 5        | ×            |
|-------------------|----------|--------------|
| _IO Data Setting- |          |              |
| Data Name:        | i o1     |              |
| Database Name:    | test     |              |
| Variable Name:    | data     | $\mathbf{P}$ |
| Refresh Period:   | 500      |              |
| v v               | K Cancel |              |

Figure 4.6

3) After you complete modifying the data, click on **Save** to save the modifications.

# 4.3 User-Defined Data

The user-defined data is only used for interface configuration. It is unnecessary to associate this type of data with the data in the real-time database. Besides, accessing the user-defined data from the interface database is much faster than accessing the data from the real-time database.

Therefore, for the data which is only used for interface control but not for the ladder diagram, real-time or historical recordings, alarms, or device configuration, it is recommended to define them as user-defined data in the interface database.

This following sections describe how to define the user-defined data in details.

## 4.3.1 Adding Data

To add a user-defined data, do as follows:

1) On the left side of the **Project Manager** window, select **User-Defined Data** and right-click in the list pane on the right side of the window, as shown in Figure 4.7.



Figure 4.7

2) Select Add Data, and you will see a dialog box as shown in Figure 4.8.

| Temory Data Setting | × |
|---------------------|---|
| Memory Data Setting |   |
| Data Name:          |   |
| Data Type:          |   |
| Data Length: 0      |   |
| Initial value: 0    |   |
| V OK X Cancel       |   |



In Figure 4.8, set the data properties according to the definitions below:

- **Data Name**: Unique name for identifying a data variable used in an application. The data variables of the same database must have different names. Names of data variables are case sensitive. Click anywhere inside the text box to start typing. If you are a project engineer, you can type in here the variable name.
- **Data Type**: Type of the data. Click on the arrow down button to select from the list of data types provided for your selection.
- **Data Length**: The length of the data varies from variable to variable. For example, the data length for a long data is 4 bytes. The data length for the other types of data follows the specific rules accordingly.
- **Initial Value**: Initial value of a variable. It is necessary to set an initial value. For example, the timer of a ladder diagram needs an initial value for the timing.

# 4.3.2 Deleting Data

To delete a user-defined data, do as follows:

1) Right-click on a real-time data you want to delete, and you'll see a right-click menu as shown in Figure 4.9.





2) Select **Delete Data**, and you will see a dialog box as shown in Figure 4.10.



Figure 4.10

- 3) Click on **OK**, and the selected user-defined data is deleted.
- 4.3.3 Modifying Data

To modify a user-defined data, do as follows:

1) Right-click on a user-defined data, and you will see a right-click menu as shown in Figure 4.11.





2) Select **Modify**, and you will see a dialog box as shown in Figure 4.12.

| Tenory Data Set  | ting   |          | × |
|------------------|--------|----------|---|
| -Memory Data Set | ting   |          | _ |
| Data Name:       | al     |          |   |
| Data Type:       | string | -        |   |
| Data Length:     | 1      |          |   |
| Initial value:   | 0      |          |   |
|                  | 4      |          |   |
| 🖌 ок             |        | X Cancel |   |
|                  |        |          |   |

Figure 4.12

3) Click on **OK** to save all the modifications.

# 4.4 Data Referencing

Different from refering to the data of the real-time database, it is unnecessary to define the database name while refering to the data of the interface database. Please follow the two rules below:

1) When the data does not work as a system function, refer to the data as **\$Data** 

Name. For example, you can use **\$pic\_data1** to refer to the data **pic\_data1** of the interface database.

2) When the data works as a system function and the data is of the string data type, refer to the data as **Data Name**. (To be noted, no \$ in the front.) For example, **data\_input\_window**("pic\_data", "test", 0, 100, 0).

# Chapter 5 Interface Configuration

EASY provides convenient, flexible, and powerful interface configuration functions.

EASY supports various basic graphic controls, such as:

- Rectangles (including incremental rectangles)
- Lines
- Ovals (including circles)
- Images
- Text
- Buttons
- Checkboxes
- Drop-down boxes
- Timers
- Trend curve windows
- Alarm windows, and
- Historical lists

Besides, EASY provides a graphics library, which has controls that might be used in various industries, such as pumps, pedestal actuators, and digitrons.

You can easily configure the properties of these controls. Some of the properties are called dynamic properties, which means they change dynamically during the operation. These dynamic properties use the standard C language scripts. In other words, they not only follow the syntax of the C language, but also support the functions from the function library of the C language. Because of all this, EASY is highly flexible and can achieve a rich variety of functions which are impossible for the traditional configuration methods.

# 5.1 Interface Windows

EASY allows configuring graphic interfaces for an application based on windows. After creating a window, you can add various types of graphic objects into it and define their properties, so as to achieve nice and vivid dynamic interfaces of different styles.

#### 5.1.1 Naming Conventions

Names of windows follow the following naming conventions:

- Naming rules for identifiers of the C language: Chinese not supported; starting with letters which are followed by letters, digits, or underscores.
- 2) Window names are case sensitive.

3) The following window names are reserved for the system internal use only, and thus are not available for user selection:

sys\_set\_time\_wnd, sys\_link\_timeout\_wnd, hmi\_sys\_set\_wnd, and all window names starting with EASY.

### 5.1.2 Creating an Interface Window

To create an interface window, do as follows:

1) On the left side of the **Project Manager** window, select **Interface** and then right-click in the list pane on the right side, as shown in Figure 5.1.

| New Window( <u>N</u> )    |
|---------------------------|
| Delete Window( <u>D</u> ) |
| Modify( <u>P</u> )        |
| Edit( <u>E</u> )          |
|                           |



2) Select Add an Interface, and you will see a dialog box as shown in Figure 5.2.

| Vindow Setting                                         | × |
|--------------------------------------------------------|---|
| Window Information                                     | 1 |
| Name:                                                  |   |
| Title:                                                 |   |
| File Name:                                             |   |
| 🔽 Startup Showing 🔽 Create File Auto 🔽 Disable Showing |   |
| 🖋 OK 🌋 Cance                                           |   |



In Figure 5.2, set the interface parameters according to the definitions below:

- **Name**: Name of the new interface window; unique identifier of a window. All the windows in the EASY system have different names.
- **Title**: Title of the new interface window. After you set the title property to **Display the title**, and then this title will be displayed as the window title.
- File Name: The EASY system saves all the window-related property information into an xml file. This parameter defines the name of the xml file.
- The **Display at application startup** checkbox: If you check this checkbox, the window name, title, and the xml file name will be displayed at the application startup; otherwise, they will not be displayed.

- The Auto create file checkbox: If you check this checkbox, the system will automatically create an xml file and save the window-related information to that xml file; otherwise, the system will allow associate this window to an existing xml file rather than creating a new xml file.
- The **Disable the interface** checkbox: If you check this checkbox, the system will not display the interface and all graphic components on this interface. In addition, none of the related dynamic properties and scripts will not be executed.

# 5.1.3 Deleting an Interface Window

To delete an interface window, do as follows:

 On the left side of the **Project Manager** window, select **Interface** and then right-click on a window name you want to delete in the list pane on the right side of the window.

You will see a right-click menu as shown in Figure 5.3.



Figure 5.3

2) Select **Delete an Interface**, and the selected interface window will be deleted from the system.

Note: After you select **Delete an Interface**, only the interface window is deleted from the project configuration; the **xml** file which stores the window-related information is not deleted from the system.

# 5.1.4 Modifying the Window Configuration

To modify the configuration of an interface window, do as follows:

1) On the left side of the **Project Manager** window, select **Interface** and then right-click on a window for which you want to modify the configuration in the list pane on the right side of the window.

You will see a right-click menu as shown in Figure 5.4.



#### Figure 5.4

2) Select **Modify** to modify the window configuration.

#### 5.1.5 Editing an Interface Window

To edit an interface window, do as follows:

1) On the left side of the **Project Manager** window, select **Interface** and then double-click (or right-click) on a window which you want to edit in the list pane on the right side of the window.

You will see a menu as shown in Figure 5.4.



Figure 5.5

2) Select Edit, and you will see the Interface Editor window as shown in Figure 5.6.



#### Figure 5.6

In this **Interface Editor** window, you can add graphic components, set static and dynamic properties for the added graphic components, or implement other interface configuration tasks.

# 5.2 Interface Editor

On the left side of the **Project Manager** window, select **Interface** and then double-click (or right-click) on a window which you want to edit in the list pane on the right side of the window. Select **Edit**, and you will see the **Interface Editor** window, as shown in Figure 5.6.

## 5.2.1 Adding a Graphic Component

On the left side of the **Interface Editor** window is the toolbox area, which lists the basic graphic controls supported by the system and the Graphics Library button as well.

To add a basic graphic control, you just need to select the graphic component with a left click.

To add a control from the graphics library, do as follows:

1) Click on the **Graphics Library** button, and you will see the **Select from Library** window as shown in Figure 5.7.



Figure 5.7

- Select a graphic control you want to add from the graphics library and click on OK.
- Move the cursor to the editting area on the right side of the toolbox area in the Interface Editor window.

And you will see the cursor becomes a cross.

4) Click anywhere in the editting area to add the graphic control.

# 5.2.2 Deleting a Graphic Component

To delete a graphic component, select a graphic control you want to delete, and press the **Delete** key from your keyboard. And the selected graphic component will be deleted.

## 5.2.3 Layout of Graphic Components

In the **Interface Editor** window, select the **Format** menu, and you can see all the function menus related to layout of graphic components.

#### 5.2.3.1 Selecting Multiple Graphic Components

You can select multiple graphic objects in the following two ways:

- Using the **Ctrl** key. Do as follows:
  - 1) Select any one graphic object with a left click.
  - Press and hold the Ctrl key on your keyboard while clicking on any other graphic object.
- By dragging the mouse. Do as follows:
  - 1) Place the cursor in a point where all the target graphic objects can be covered when you drag the mouse.
  - Click on the top left, top right, bottom left, or bottom right rectangle of a graphic object by pressing the left button of the mouse.
  - Drag the mouse across the target graphic objects.
     You will see a big rectangle in dot lines covering all the target graphic objects.
  - 4) Release the mouse.

All the graphic objects inside the dot-lined rectangle are selected.

Each selected graphic object has 8 small rectangles on its sides. But among all the selected objects, only one object has solid rectangles, while the others are all hollow. The following formatting operations are all implemented on the graphic object with the solid rectangles.

#### 5.2.3.2 Formatting Graphic Components - Alignment

In the **Interface Editor** window, select **Format** and then **Alignment**, and you can see a list of cascading menus which are described in the table below.

| Menu | Description |
|------|-------------|
|      |             |

| Top Alignment  | Aligns multiple selected objects with the top border of the topmost object.            |  |  |
|----------------|----------------------------------------------------------------------------------------|--|--|
|                | To achieve top alignment, select multiple graphic objects, and then select Format >    |  |  |
|                | Alignment > Top Alignment.                                                             |  |  |
| Center         | Aligns two or more graphic objects by putting their centers on the same vertical line. |  |  |
| Alignment      | To achieve center alignment, select multiple graphic objects, and then select Format > |  |  |
|                | Alignment > Center Alignment.                                                          |  |  |
| Bottom         | Aligns two or more selected objects with the bottom border of the bottom-most object.  |  |  |
| Alignment      | To achieve bottom alignment, select multiple graphic objects, and then select Format > |  |  |
|                | Alignment > Bottom Alignment.                                                          |  |  |
| Left Alignment | Aligns two or more selected objects with the left border of the left-most object.      |  |  |
|                | To achieve left alignment, select multiple graphic objects, and then select Format >   |  |  |
|                | Alignment > Left Alignment.                                                            |  |  |
| Right          | Aligns two or more selected objects with the right border of the right-most object.    |  |  |
| Alignment      | To achieve left alignment, select multiple graphic objects, and then select Format >   |  |  |
|                | Alignment > Right Alignment.                                                           |  |  |

Select the alignment menus described in the table above, and you will see the different effects as shown below:





Figure 5.8 Before executing **Bottom Alignment** 



Figure 5.10 Before executing Left Alignment

Figure 5.9 After executing Bottom Alignment



Figure 5.11 After executing Left Alignment





Figure 5.12 Before executing **Center Alignment** 

Figure 5.13 After executing **Center Alignment** 

## 5.2.3.3 Formatting Graphic Components - Measurement

In the **Interface Editor** window, select **Format** and then **Measurement**, and you can see a list of cascading menus which are described in the table below.

| Menu           | Description                                                                        |  |
|----------------|------------------------------------------------------------------------------------|--|
| Same Width     | Sets multiple selected objects to the same width.                                  |  |
|                | To achieve same width, select multiple graphic objects, and then select Format >   |  |
|                | Measurement > Same Width.                                                          |  |
| Same Height    | Sets multiple selected objects to the same height.                                 |  |
|                | To achieve same height, select multiple graphic objects, and then select Format >  |  |
|                | Measurement > Same Height.                                                         |  |
| Same Width and | Sets multiple selected objects to the same width and height.                       |  |
| Height         | To achieve same width and height, select multiple graphic objects, and then select |  |
|                | Format > Measurement > Same Width and Height.                                      |  |

# 5.2.3.4 Formatting Graphic Components - Spacing

In the **Interface Editor** window, select **Format** and then **Spacing**, and you can see a list of cascading menus which are described in the table below.

| Menu                   | Description                                                                    |  |  |
|------------------------|--------------------------------------------------------------------------------|--|--|
| Horizontal             | Sets the horizontal spacing between the multiple selected objects to the same. |  |  |
| Spacing\Same Spacing   | To achieve same horizontal spacing, select multiple graphic objects, and then  |  |  |
|                        | select Format > Horizontal Spacing > Same Spacing.                             |  |  |
| Vertical Spacing \Same | Sets the vertical spacing between the multiple selected objects to the same.   |  |  |
| Spacing                | To achieve same vertical spacing, select multiple graphic objects, and then    |  |  |
|                        | select Format > Vertical Spacing > Same Spacing.                               |  |  |

# 5.2.3.5 Formatting Graphic Components - Layering

In the **Interface Editor** window, select **Format** and then **Layering**, and you can see a list of cascading menus which are described in the table below.

| Menu        | Description                                                                      |  |  |
|-------------|----------------------------------------------------------------------------------|--|--|
| Move to Top | Moves one or more selected objects to the top layer as the foreground for the    |  |  |
|             | overlapped graphic objects.                                                      |  |  |
| Move to     | Moves one or more selected objects to the bottom layer as the background for the |  |  |
| Bottom      | overlapped graphic objects.                                                      |  |  |

The two graphic components in Figure 5.14 are overlapped. The incremental rectangle is behind the incremental oval. To move the incremental rectangle to the front of the incremental oval, you need to right-click on the incremental rectangle and select **Move to Top**.

Figure 5.14 shows how the objects look like before the **Move to Top** command is executed; Figure 5.15 shows how they look like after the **Move to Top** command is executed.



Figure 5.14



Figure 5.15

# 5.3 Properties of Graphic Components

#### 5.3.1 Overview

Select a graphic component, and the properties of this graphic component will be listed on the right side of the Interface Editor window, as shown in Figure 5.16.

| Property × |                         |                   |  |  |
|------------|-------------------------|-------------------|--|--|
| window 💌   |                         |                   |  |  |
| -          | <b>Basic properties</b> |                   |  |  |
| Name       |                         | window            |  |  |
|            | Left                    | 0                 |  |  |
|            | Тор                     | 0                 |  |  |
|            | Right                   | 640               |  |  |
|            | Bottom                  | 480               |  |  |
|            | Width                   | 640               |  |  |
|            | Height                  | 480               |  |  |
|            | Visible                 | $\mathbf{\nabla}$ |  |  |
|            | Enable                  | $\mathbf{\nabla}$ |  |  |
|            | Flash                   |                   |  |  |
|            | Flash speed             | 1                 |  |  |
|            | Not redraw              |                   |  |  |
|            | Horizontal offset       | 0                 |  |  |
|            | Vertical offset         | 0                 |  |  |
| -          | Event                   |                   |  |  |
|            | open                    |                   |  |  |
|            | close                   |                   |  |  |
| Ξ          | Window                  |                   |  |  |
|            | caption                 | No caption        |  |  |
|            | centerwnd               | Not align center  |  |  |
|            | bkcolor                 | #FFFFF            |  |  |
|            | security level          | 0                 |  |  |
|            | security handl          | no prompt         |  |  |
|            |                         |                   |  |  |
|            |                         |                   |  |  |
|            |                         |                   |  |  |



Some properties have a small rectangle is at the right-most side, as shown in

Figure 5.16. Click on the small rectangle , and you can set the expression or dynamic script for this property. In this case, the value of the property will change during the operation. This type of properties are thus called dynamic properties. Once a property is

configured as dynamic, the small rectangle will become red **!**.

The property list is composed of the following five parts:

• **Graphic Components Drop-Down List Box**: Lists all the graphic components contained in the current window. You can select graphic components from this drop-down list for configuration or modification.

• **Basic Properties**: Common properties shared by all graphic components, such as **Top**, **Bottom**, **Left**, **Right**, **Width**, and **Height**.

- **Events**: Events supported by the selected graphic component. You can compile the event script, which can be executed when the corresponding event occurs.
- **Graphic-Control Specific Properties**: Each graphic control component has its own specific properties, which vary from component to component.

• **Property Description**: A brief description of a selected property is displayed at the bottom of the **Property List** pane.

Considering that basic properties are those shared by all control components, section 5.3.3 will be focusing on describing them. However, most basic properties and control-specific properties can be configured as dynamic. Therefore, dynamic properties will be introduced first.

5.3.2 Dynamic Properties

#### 5.3.2.1 Dynamic Color Properties

Configure the dynamic **Color** properties in the **Dynamic Color Properties Setting** dialog box as shown in Figure 5.17.

| Dynamic Color Property Setting 🛛 🗙 |          |                                      |  |  |  |
|------------------------------------|----------|--------------------------------------|--|--|--|
| Choose Dynamic Property            |          |                                      |  |  |  |
| O Digital                          | C Analog | C Custom Expression C Dynamic Script |  |  |  |
| Variable or<br>Expression:         |          | Ariabl Buncti                        |  |  |  |
| 🗉 Digital set                      |          |                                      |  |  |  |
| Open                               | #000000  |                                      |  |  |  |
| Close                              | #000000  |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    |          |                                      |  |  |  |
|                                    | 🖌 ок     | Cancel                               |  |  |  |
|                                    |          |                                      |  |  |  |



1. If you select **Dynamic Property Type** as **Digital**, you will see the configuration dialog box as shown in Figure 5.18.

| Dyr | Dynamic Color Property Setting |          |                                        |  |  |  |
|-----|--------------------------------|----------|----------------------------------------|--|--|--|
|     | Choose Dynamic H               | Property |                                        |  |  |  |
|     | 🖲 Digital                      | C Analog | C Custom Expression 🛛 C Dynamic Script |  |  |  |
|     | Variable or<br>Expression:     |          | Ariabl Runctic                         |  |  |  |
|     | Digital set                    |          |                                        |  |  |  |
|     | Open                           | #000000  |                                        |  |  |  |
|     | Close                          | #000000  |                                        |  |  |  |
|     |                                |          |                                        |  |  |  |
|     |                                | OK       | Cancel                                 |  |  |  |

Figure 5.18

The configuration parameters are described as follows:

- Variable or Expression: Covers all the bit database variables or all the expressions with the return value as bit.
- **Digital Setting/On**: Sets the color used when the bit variable or value of the expression is not 0 (TRUE).
- **Digital Setting/Off**: Sets the color used when the bit variable or value of the expression is 0 (FALSE).
- 2. If you select **Dynamic Property Type** as **Analog**, you will see the configuration dialog box as shown in Figure 5.19.

| Dynamic Color              | Property Setting | ;                   | ×                |
|----------------------------|------------------|---------------------|------------------|
| -Choose Dynamic F          | roperty          |                     |                  |
| C Digital                  | Analog           | C Custom Expression | C Dynamic Script |
| Variable or<br>Expression: |                  |                     | Mariabl Bunctic  |
| Analog set                 |                  |                     |                  |
| Default color              | #000000          |                     |                  |
|                            |                  |                     |                  |
|                            |                  |                     |                  |
|                            |                  |                     |                  |
|                            |                  |                     |                  |
|                            |                  |                     |                  |
|                            |                  |                     |                  |
|                            |                  |                     |                  |
|                            |                  |                     |                  |
|                            |                  |                     |                  |
| Analog<br>Value:           |                  | Add Modify          | <b>W</b> Uelete  |
|                            | A and            | <b>90</b>           |                  |
|                            | OK OK            | Cancel              |                  |

Figure 5.19

The configuration parameters are described as follows:

- Variable or Expression: Covers all the int/float database variables and all the expressions with the return value as int/float.
- Analog Setting: Sets the threshold value for the analog. This parameter sets the colors used when the analog threshold is more than or equal to a specific value. Note: Threshold values must be set incrementally from small to big. For example:

Default color: Black;

10: Red;

20: Green

Which means:

- 1) When the analog is < 10, the default color (black) is displayed;
- 2) When the analog is >= 10 and < 20, the red color is displayed;
- 3) When the analog is >=20, the green color is displayed.
- 3. If you select **Dynamic Property Type** as **Customized Expression**, you will see the configuration dialog box as shown in Figure 5.20.

| Dynamic Color Property Setting |          |                                      |  |  |
|--------------------------------|----------|--------------------------------------|--|--|
| -Choose Dynamic Pr             | roperty  | _                                    |  |  |
| C Digital                      | C Analog | 📀 Custom Expression 🕜 Dynamic Script |  |  |
| Variable or<br>Expression:     |          | Mariabl Bunctie                      |  |  |
|                                |          |                                      |  |  |
|                                |          |                                      |  |  |
|                                |          |                                      |  |  |
|                                |          |                                      |  |  |
|                                |          |                                      |  |  |
|                                |          |                                      |  |  |
|                                | V OK     | 2 Cancel                             |  |  |

Figure 5.20

The configuration parameter **Variable or Expression** is described as follows:

You can directly type an expression requesting that he return value of the expression must be an RGB value.

For example, **\$test1.data2 > 10 ? 0x0000FF : 0x00FF00**.

Which means:

1) When the analog **\$test1.data2** is > 10, the color is red (**0x0000FF** stands for the RGB value for the red color);

2) When the analog **\$test1.data2** is <= 10, the color is green (**0x00FF00** stands for the RGB value for the green color).

4. If you select **Dynamic Property Type** as **Dynamic Script**, you will see the configuration dialog box as shown in Figure 5.21.

| Dynamic Color              | Property Setting | ×                                    |
|----------------------------|------------------|--------------------------------------|
| C Digital                  | C Analog         | C Custom Expression 📀 Dynamic Script |
| Variable or<br>Expression: |                  | Ariabl Bunctie                       |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            |                  |                                      |
|                            | 🖌 ок             | X Cancel                             |

Figure 5.21

You can type the dynamic script in the editting area, requesting that the return value of the dynamic script is an RGB value.

For example:

```
if ($test1.data2 > 10)
{
     return 0x0000FF;
}
else
{
     return 0x00FF00;
}
```

Which means:

- When the analog \$test1.data2 is > 10, the color is red (0x0000FF stands for the RGB value for the red color);
- When the analog \$test1.data2 is <= 10, the color is green (0x00FF00 stands for the RGB value for the green color).

## 5.3.2.2 Dynamic Text Properties

Configure the dynamic **Text** properties in the **Dynamic Text Properties Setting** dialog box as shown in Figure 5.22.

| Dy | namic Text P                   | roperty Setti | ng             | ×      |
|----|--------------------------------|---------------|----------------|--------|
|    | Choose Dynamic Pr<br>C Express | roperty Type  | Tynamic Script |        |
|    |                                |               |                |        |
|    | 🔎 Variable                     | 🔎 Function    | OK OK          | Cancel |

Figure 5.22

1. If you select **Dynamic Property Type** to **Expression**, you will see the configuration dialog box as shown in Figure 5.23.

| Dynamic Text Property Setting                                  | ×                       |  |
|----------------------------------------------------------------|-------------------------|--|
| -Choose Dynamic Property Type<br>© Expression © Dynamic Script |                         |  |
| Variable or<br>Expression:<br>Choose Expression Type           |                         |  |
| Int C Float                                                    | C Double Float C String |  |
| Integaral Num: 0 I                                             | Decimal Num: 2          |  |
| 💭 Variable 💭 Function                                          | V OK Cancel             |  |

Figure 5.23

The configuration parameters are described as follows:

- **Variable or Expression**: The database variable or the expression to which a graphic control component is associated.
- Expression Type, Number of Integers, and Number of Decimals: Controls how the variable or value of the expression is displayed as text. See the following table for detailed description.

| Expression | Number of Integers                                      | Number of Decimals                                      | Remarks         |
|------------|---------------------------------------------------------|---------------------------------------------------------|-----------------|
| Туре       |                                                         |                                                         |                 |
| Int        | Minimum number of integers to be displayed.             | N/A                                                     | The value of    |
| Float      | • When the number of integers is less                   | Fixed number of decimals to be displayed.               | the variable or |
| Double     | than enough, 0 is added on the left to                  | • When the number of decimals is less                   | expression      |
|            | make enough number of integers.                         | than enough, 0 is added on the right to                 | must be         |
|            | • When the number of integers is more                   | make enough number of decimals.                         | numeric, but    |
|            | than required, only the specified                       | • When the number of decimals is more                   | not string.     |
|            | number of integers will be displayed.                   | than required, only the specified                       |                 |
|            | • If you define <b>Number of Integers</b> to <b>0</b> , | number of decimals will be displayed.                   |                 |
|            | all the actual integers will be displayed.              | • If you define <b>Number of Decimals</b> to <b>0</b> , |                 |
|            |                                                         | only integers will be displayed;                        |                 |
|            |                                                         | decimals not.                                           |                 |
| String     | N/A                                                     | N/A                                                     | The value of    |
|            |                                                         |                                                         | the variable or |
|            |                                                         |                                                         | expression      |
|            |                                                         |                                                         | must be string, |
|            |                                                         |                                                         | but not         |
|            |                                                         |                                                         | numeric.        |

2. If you select **Dynamic Property Type** to **Dynamic Script**, you will see the configuration dialog box as shown in Figure 5.24.

| Dynan        | ic Color             | Property Setting |                                   | ×    |
|--------------|----------------------|------------------|-----------------------------------|------|
| Choos        | se Dynamic P         | roperty          |                                   |      |
|              | 🔿 Digital            | C Analog         | C Custom Expression 🕟 Dynamic Scr | ipt  |
| Var:<br>Expi | iable or<br>ression: |                  | Ariabl Run                        | ctic |
|              |                      |                  |                                   | ~    |
|              |                      |                  |                                   |      |
|              |                      |                  |                                   |      |
|              |                      |                  |                                   |      |
|              |                      |                  |                                   |      |
|              |                      |                  |                                   | ~    |
|              |                      | ок ок            | X Cancel                          |      |

Figure 5.24

You can type the dynamic script in the editting area, requesting that the return value of the dynamic script must be a string.

For example:

```
if ($test1.data2 > 10)
{
     return "aaaa";
}
else
{
     return "bbbb";
}
```

Which means when the analog **\$test1.data2** is > 10, the text displayed is **aaaa**; otherwise, the text displayed is **bbbb**.

#### 5.3.2.3 Other Dynamic Properties

For properties other than the **Color** or **Text** property, configure the dynamic properties in the **Dynamic Properties Setting** dialog box as shown in Figure 5.25.

| Dynamic Property                    |           |                  | $\mathbf{X}$ |
|-------------------------------------|-----------|------------------|--------------|
| - Choose Dynamic Prop<br>@ Expressi | erty Type | 🔿 Dynamic Script |              |
| Expression                          |           |                  |              |
| -Dynamic Script                     |           |                  |              |
|                                     |           |                  |              |
|                                     |           |                  |              |
| 🔎 Variable                          | Sunction  | 🖌 ок             | Cancel       |

Figure 5.25

1. If you select **Dynamic Property Type** as **Expression**, you will see the configuration dialog box as shwon in Figure 5.26.

| Dynamic Property                           |                                          | ×        |
|--------------------------------------------|------------------------------------------|----------|
| -Choose Dynamic Property Typ<br>Expression | oe — — — — — — — — — — — — — — — — — — — | cript    |
| Expression                                 |                                          |          |
| -Dynamic Script                            |                                          |          |
|                                            |                                          |          |
|                                            |                                          |          |
|                                            |                                          |          |
| 🔎 Variable 🖉 🔎 Fu                          | inction 🛛 🚽 OI                           | K Cancel |

Figure 5.26

The configuration parameter **Expression** is described as follows:

The expression to which a graphic control component is associated. The return value of the expression varies according to the specific characteristics of the property.

2. If you select **Dynamic Property Type** as **Dynamic Script**, you will see the configuration dialog box as shwon in Figure 5.27.

| Dynamic Property             |                  |
|------------------------------|------------------|
| Choose Dynamic Property Type | 🕫 Dynamic Script |
| Expression-                  |                  |
| Dynamic Script               |                  |
|                              |                  |
|                              |                  |
| 🔎 Variable 💋 Function        | OK 🌋 Cancel      |

Figure 5.27

You can type the dynamic script in the editting area. The return value of the dynamic script varies according to the specific characteristics of the property.

#### 5.3.3 Basic Properties

#### 5.3.3.1 Name

Names of graphic control components in a window must be unique. No dynamic properties involved.

#### 5.3.3.2 Location

The location properties are those related to the location of a graphic component, including left, top, right, bottom, width, and height. You can configure the left, top, right, and bottom properties dynamic; no dynamic properties for width and height. During the on-site operation, the width and height of a graphic component adjust automatically when the left, top, right, and bottom properties change.

When configuring dynamic properties for the left, top, right, and bottom properties, make sure that the return value of the associated expression or dynamic script is numeric.

#### 5.3.3.3 Visibility

The visibility property defines whether a graphic component is visible. You can configure this property dynamic.

When configuring the dynamic visibility property, make sure that the return value of the associated expression or dynamic script is bit.

When the return value is 0 (FALSE), the graphic component is invisible; when it is not 0 (TRUE), the graphic component is visible.

#### 5.3.3.4 Enability

The enability property is indicated by an enability flag. It defines whether to execute event scripts of a graphic component. You can configure this property dynamic.

When configuring the dynamic enability property, make sure that the return value of the associated expression or dynamic script is bit.

When the return value is 0 (FALSE), the enability flag is off; when it is not 0 (TRUE), the enability flag is on.

#### 5.3.3.5 Flashing

The are two flashing properties: flashing and flashing speed. The flashing speed property defines how fast the flashing goes; the smaller the value, the faster the flashing. Both properties can be configured dynamic.

When configuring the dynamic flashing property, make sure that the return value of the associated expression or dynamic script is bit. When the return value is 0 (FALSE), the graphic component does not flash; when it is not 0 (TRUE), the graphic component flashes.

When configuring the dynamic flashing speed property, make sure that the return value of the associated expression of dynamic script is numeric.

#### 5.3.3.6 Redrawing

The redrawing property defines whether to automatically redraw a graphic component when properties of the graphic component change. For purposes of minimizing CPU utilization and improving system efficiency, graphic components are not

set to be automatically redrew whenever the display of the graphic component is not affected. This property can be configured dynamic.

When configuring the dynamic property, make sure that the return value of the associated expression or dynamic script is bit.

When the return value is 0 (FALSE), the graphic component will be redrew automatically; when it is not 0 (TRUE), the graphic component will not be redrew

#### 5.3.3.7 Positioning

There are two positioning properties: horizontal and vertical. They define the horizontal and vertical positioning of a graphic component in a window.

When these two properties are modified, the changes actually are reflected on the left and top properties. When you modify the left or top property without modifying the right or bottom property, the right or bottom property of the graphic component does not change; instead, the width or height of the graphic component changes automatically. However, different from modifying the left or top property, modifying the horizongtal or vertical positioning property does not change the width or height of a graphic component; instead, the right or bottom property of the graphic component changes automatically.

When configuring the dynamic horizontal and vertical positioning properties, make sure that the return value of the associated expression of dynamic script is numeric.

# 5.3.4 Control-Specific Properties

#### 5.3.4.1 Window

| Property       | Description                                                             | Remarks on Dynamic        |
|----------------|-------------------------------------------------------------------------|---------------------------|
|                |                                                                         | Properties                |
| Title          | Defines whether the window title is displayed.                          | No dynamic properties for |
|                | When you select <b>Display the title</b> , the title entered during the | windows.                  |
|                | creating of a new interface window in Project Manager will be           |                           |
|                | displayed as the window title.                                          |                           |
| Centering      | Defines whether the window is centered in the screen.                   |                           |
| Background     | Defines the background color of the window.                             |                           |
| Color          |                                                                         |                           |
| Security Level | See Chapter 15 Access Management.                                       |                           |
| Security       |                                                                         |                           |
| Handling       |                                                                         |                           |

# 5.3.4.2 Rectangle

| Property | Description                                   | Remarks on Dynamic |           |         | ;     |        |
|----------|-----------------------------------------------|--------------------|-----------|---------|-------|--------|
|          |                                               |                    | Pro       | perties |       |        |
| Frame    | Sets the color of the frame of the rectangle. | The                | return    | value   | of    | the    |
| Color    |                                               | expre              | ession or | dynami  | c scr | ipt is |
| Filling  | Sets the color of filling of the rectangle.   | an R               | GB value  |         |       |        |
| Color    |                                               |                    |           |         |       |        |

# 5.3.4.3 Line

| Property  | Description                                                | Remarks on Dynamic Properties      |
|-----------|------------------------------------------------------------|------------------------------------|
| Color     | Sets the color of lines.                                   | The return value of the expression |
|           |                                                            | or dynamic script is an RGB value. |
| Line      | Sets the width of lines.                                   | The return value of the expression |
| Width     |                                                            | or dynamic script is int.          |
| Direction | Sets the direction of lines; for example, from top left to | The return value of the expression |
|           | bottom right or from bottom left to top right.             | or dynamic script is 1 or 2:       |
|           |                                                            | • 1: from top left to bottom right |
|           |                                                            | • 2: from bottom left to top right |
| Туре      | Sets the type of lines; for example, solid lines, dotted   | The return value of the expression |
|           | lines, or dashed lines.                                    | or dynamic script is 1, 2 or 3:    |
|           |                                                            | • 1: solid lines                   |
|           |                                                            | • 2: dotted lines                  |
|           |                                                            | • 3: dashed lines                  |

#### 5.3.4.4 Oval

| Property      | Description                                | Remarks on Dynamic                 |
|---------------|--------------------------------------------|------------------------------------|
|               |                                            | Properties                         |
| Frame color   | Sets the color of the frame of the oval.   | The return value of the expression |
| Filling color | Sets the color of the filling of the oval. | or dynamic script is an RGB value. |

# 5.3.4.5 Text

| Property    | Description                                        | Remarks on Dynamic Properties         |
|-------------|----------------------------------------------------|---------------------------------------|
| Color       | Sets the color of the text.                        | The return value of the expression or |
|             |                                                    | dynamic script is an RGB value.       |
| Text        | Sets the text content.                             | See section 5.3.2.2 Dynamic Text      |
|             |                                                    | Properties.                           |
| Text Length | Defines the maximum text length (number of bytes). | No dynamic properties.                |
| Alignment   | Defines how the text is aligned.                   | The return value of the expression or |

| Property  | Description            | Remarks on Dynamic Properties                     |  |  |
|-----------|------------------------|---------------------------------------------------|--|--|
|           |                        | dynamic script is 1, 2, or 3:                     |  |  |
|           |                        | <ul> <li>1: Left Alignment</li> </ul>             |  |  |
|           |                        | • 2: Right Alignment                              |  |  |
|           |                        | 3: Center Alignment                               |  |  |
| Font Size | Defines the font size. | The return value of the expression or             |  |  |
|           |                        | dynamic script is int:                            |  |  |
|           |                        | • 0: Default font size                            |  |  |
|           |                        | <ul> <li>Other: User-defined font size</li> </ul> |  |  |

# 5.3.4.6 Image

| Property     | Description                                              | Remarks on Dynamic                |
|--------------|----------------------------------------------------------|-----------------------------------|
|              |                                                          | Properties                        |
| File Name    | Defines the name of the image file.                      | The return value is a string with |
|              | When you select an image file not stored in the project  | the name of the image file (file  |
|              | directory, the system automatically copies the file to   | path not included).               |
|              | the project directory. And then the image control        | The image file must be stored in  |
|              | automatically associates the copied image file.          | the project directory.            |
|              | If you edit an original image file not stored in the     |                                   |
|              | project directory, the changes will not be automatically |                                   |
|              | reflected in the image control. In this case, you need   |                                   |
|              | to manually add the editted image file.                  |                                   |
| Loading Mode | Defines how the image is loaded.                         | The return value is 1 or 2:       |
|              | • At startup: The image is loaded at the startup of      | • 1: At startup                   |
|              | the application. Once loaded, the image is kept          | • 2: During operation             |
|              | in the memory. In this way, the image is loaded          |                                   |
|              | quite fast during the application operation.             |                                   |
|              | However, it reduces the speed of the application         |                                   |
|              | startup. Besides, it utilizes the memory                 |                                   |
|              | considerably.                                            |                                   |
|              | • During operation: The image is loaded during the       |                                   |
|              | application operation. In this way, the image is         |                                   |
|              | loaded into the memory only when it is                   |                                   |
|              | necessary to display the image. In other words,          |                                   |
|              | the memory utilized by loading the image will be         |                                   |
|              | released when it is not necessary to display the         |                                   |
|              | image. This loading mode ensures faster                  |                                   |
|              | application startup, and reduces the memory              |                                   |
|              | utilization. However, the speed for loading the          |                                   |
|              | image is very slow.                                      |                                   |
| Transparency | Defines whether to make the image background             | The return value is 0 or 1:       |
|              | transparent.                                             | • 0: Not transparent              |
|              |                                                          | • 1: Transparent                  |
| Property     | Description                                      | Remarks on Dynamic                 |
|--------------|--------------------------------------------------|------------------------------------|
|              |                                                  | Properties                         |
| Transparency | Defines the color of the transparent background. | The return value of the expression |
| Color        |                                                  | or dynamic script is an RGB value. |

## 5.3.4.7 Incremental Rectangle

| Property    | Description                                            | Remarks on Dynamic                 |
|-------------|--------------------------------------------------------|------------------------------------|
|             |                                                        | Properties                         |
| Start Color | Defines the start color for the incremental color      | The return value of the expression |
|             | change.                                                | or dynamic script is an RGB value. |
| End Color   | Defines the end color for the incremental color        |                                    |
|             | change.                                                |                                    |
| Direction   | Defines the direction of the incremental color change. | The return value of the expression |
|             |                                                        | or dynamic script is 32 or 47:     |
|             |                                                        | • 32: Horizontal > Center> Left    |
|             |                                                        | and Right                          |
|             |                                                        | • 47: Left > Bottom > Right >      |
|             |                                                        | Top > Center                       |

Drawing an incremental rectangle utilizes too much CPU resources. Therefore, it is not recommended to draw big incremental rectangles during configuration; for example, to draw an incremental rectangle which covers the whole window.

## 5.3.4.8 Incremental Oval

| Property    | Description                                            | Remarks on Dynamic                 |
|-------------|--------------------------------------------------------|------------------------------------|
|             |                                                        | Properties                         |
| Start Color | Defines the start color for the incremental color      | The return value of the expression |
|             | change.                                                | or dynamic script is an RGB value. |
| End Color   | Defines the end color for the incremental color        |                                    |
|             | change.                                                |                                    |
| Direction   | Defines the direction of the incremental color change. | The return value of the expression |
|             |                                                        | or dynamic script is 0 or 2:       |
|             |                                                        | • 0: Horizontal > Center> Left     |
|             |                                                        | and Right                          |
|             |                                                        | • 2: Center > circumference        |

Drawing an incremental oval utilizes too much CPU resources. Therefore, it is not recommended to draw big incremental ovals during configuration; for example, to draw an incremental oval which covers the whole window.

### 5.3.4.9 Incremental Triangle

| Property    | Description                                            | Remarks on Dynamic                 |
|-------------|--------------------------------------------------------|------------------------------------|
|             |                                                        | Properties                         |
| Start Color | Defines the start color for the incremental color      | The return value of the expression |
|             | change.                                                | or dynamic script is an RGB value. |
| End Color   | Defines the end color for the incremental color        |                                    |
|             | change.                                                |                                    |
| Direction   | Defines the direction of the incremental color change. | The return value of the expression |
|             |                                                        | or dynamic script is 1 or 4:       |
|             |                                                        | • 1: Upward                        |
|             |                                                        | • 4: Towards the left              |

Drawing an incremental triangle utilizes too much CPU resources. Therefore, it is not recommended to draw big incremental ovals during configuration; for example, to draw an incremental triangle which covers the whole window.

## 5.3.4.10 Timer

| Property | Description                                            | Remarks on Dynamic     |
|----------|--------------------------------------------------------|------------------------|
|          |                                                        | Properties             |
| Timing   | Defines the timing interval for the timer (unit: ms).  | No dynamic properties. |
| Interval | When the scheduled time is reached, the system will    |                        |
|          | execute the script defined in the <b>Timing</b> event. |                        |
|          | Note: The timer is timing constantly as long as the    |                        |
|          | system is running. It has nothing to do with whether   |                        |
|          | the window with the timer is displayed or not.         |                        |

#### 5.3.4.11 Data Input

| Property  | Description                                           | Remarks on Dynamic                 |
|-----------|-------------------------------------------------------|------------------------------------|
|           |                                                       | Properties                         |
| Variable  | Defines the name of a database variable to which this | No dynamic properties.             |
| Name      | graphic control is associated.                        |                                    |
|           | This variable is numeric instead of string.           |                                    |
| Color     | Defines the color in which the data is displayed.     | The return value of the expression |
|           |                                                       | or dynamic script is the RGB value |
|           |                                                       | of the defined color.              |
| Number of | Defines the minimum number of integers to be          | The return value of the expression |
| Integers  | displayed.                                            | or dynamic script is int.          |
|           | • When the number of integers is less than            |                                    |
|           | enough, 0 is added on the left to make enough         |                                    |
|           | number of integers.                                   |                                    |

| Property              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remarks on Dynamic                                                                                                                                                             |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Properties                                                                                                                                                                     |
|                       | <ul> <li>When the number of integers is more than required, only the specified number of integers will be displayed.</li> <li>If you define Number of Integers to 0, all the actual integers will be displayed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |
| Number of<br>Decimals | <ul> <li>The meaning of this property varies according to the type of the database variable to which the Data Input graphic control is associated.</li> <li>1. When the variable type is float, this property defines a fixed number of decimals to be displayed.</li> <li>When the number of decimals is less than enough, 0 is added on the right to make enough number of decimals.</li> <li>When the number of decimals is more than required, only the specified number of decimals to 0, only integers will be displayed; decimals not.</li> <li>When the variable type is int, this property means the same as the description for Number of Integers. For details, see the above cell.</li> </ul> | The return value of the expression<br>or dynamic script is int.                                                                                                                |
| Minimum               | Defines the minimum value of the data input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The return value of the expression                                                                                                                                             |
| Maximum<br>Value      | Defines the maximum value of the data input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The return value of the expression or dynamic script is numeric.                                                                                                               |
| Prompt                | Defines the prompt information to be displayed as the title of the <b>Data Input</b> window.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The return value of the expression or dynamic script is string.                                                                                                                |
| Password<br>Display   | <ul> <li>Defines how the password is displayed:</li> <li>If you set this property as Password Display, the password entered in the Data Input window will be displayed as a string of *.</li> <li>Otherwise, the password entered is displayed as how it is.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                   | The return value of the expression or dynamic script is bit.                                                                                                                   |
| Alignment             | Defines how the data is aligned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>The return value of the expression<br/>or dynamic script is 1, 2 or 3:</li> <li>1: Left Alignment</li> <li>2: Right Alignment</li> <li>3: Center Alignment</li> </ul> |
| Font Size             | Defines the font size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The return value of the expression or dynamic script is int:                                                                                                                   |

| Property     | Description                                                       | Remarks on Dynamic                  |
|--------------|-------------------------------------------------------------------|-------------------------------------|
|              |                                                                   | Properties                          |
|              |                                                                   | • 0: Default font size              |
|              |                                                                   | • Other ints: Defined font size     |
| Integer Type | This property is valid only when the database variable            | The return value of the             |
|              | to which the Data Input graphic control is associated             | expressionor dynamic script is 0 or |
|              | to is int.                                                        | 1:                                  |
|              | The description below is only for int variables:                  | • 0: Standard (no decimals)         |
|              | • If you select Standard (no decimals):                           | • 1: Decimals added                 |
|              | The Number of Decimals property becomes                           | automatically                       |
|              | invalid. Any entered decimals will be discarded                   |                                     |
|              | automatically. For example, if you enter 12.34,                   |                                     |
|              | the value of the associated int variable will be 12               |                                     |
|              | and displayed as <b>12</b> .                                      |                                     |
|              | • If you select <b>Decimals added automatically</b> :             |                                     |
|              | This property maps a entered float data (maybe                    |                                     |
|              | with decimals) to an int variable. The mapping                    |                                     |
|              | relationship is reflected on Number of                            |                                     |
|              | Decimals, as shown by the equation below:                         |                                     |
|              | Value of Variable = User Input * 10 <sup>Number of Decimals</sup> |                                     |
|              | For example, when you set Number of                               |                                     |
|              | Decimals to 2, if you enter 12.34, then the value                 |                                     |
|              | of the associated int variable is 1234 (which is                  |                                     |
|              | 12.34*10 <sup>2</sup> ), and displayed as <b>12.34</b> .          |                                     |

## 5.3.4.12 Text Input

| Property  | Description                                           | Remarks on Dynamic                 |
|-----------|-------------------------------------------------------|------------------------------------|
|           |                                                       | Properties                         |
| Variable  | Defines the name of a database variable to which this | No dynamic properties.             |
| Name      | graphic control is associated.                        |                                    |
|           | This variable is string.                              |                                    |
| Color     | Defines the color in which the text is displayed.     | The return value of the expression |
|           |                                                       | or dynamic script is the RGB value |
|           |                                                       | of the defined color.              |
| Prompt    | Defines the prompt information to be displayed as the | The return value of the expression |
|           | title of the Text Input window.                       | or dynamic script is string.       |
| Password  | Defines how the password is displayed:                | The return value of the expression |
| Display   | • If you set this property as password display, the   | or dynamic script is bit.          |
|           | password entered in the Text Input window will        |                                    |
|           | be displayed as a string of *.                        |                                    |
|           | • Otherwise, the password entered is displayed as     |                                    |
|           | how it is.                                            |                                    |
| Alignment | Defines how the text is aligned.                      | The return value of the expression |

| Property  | Description            | Remarks on Dynamic                 |
|-----------|------------------------|------------------------------------|
|           |                        | Properties                         |
|           |                        | or dynamic script is 1, 2, or 3:   |
|           |                        | • 1: Left Alignment                |
|           |                        | • 2: Right Alignment               |
|           |                        | • 3: Center Alignment              |
| Font Size | Defines the font size. | The return value of the expression |
|           |                        | or dynamic script is int:          |
|           |                        | • 0: Default font size             |
|           |                        | • Other ints: Defined font size    |

## 5.3.4.13 Button

| Property | Description                    | Remarks on Dynamic     |
|----------|--------------------------------|------------------------|
|          |                                | Properties             |
| Title    | Defines the title of a button. | No dynamic properties. |

## 5.3.4.14 Checkbox

| Property   | Description                                             | Remarks on Dynamic                 |
|------------|---------------------------------------------------------|------------------------------------|
|            |                                                         | Properties                         |
| Title      | Defines the title of a checkbox.                        | No dynamic properties.             |
| Associated | Defines the database variable to which the Checkbox     | The return value of the expression |
| Variable   | graphic control is associated. This variable is int.    | or dynamic script is string.       |
|            | When the checkbox is checked, the value of the          | The string refers to the name of   |
|            | associated variable becomes 1; otherwise, it is 0.      | the variable to which the          |
|            | Accordingly, if you set the value of the associated     | Checkbox graphic control is        |
|            | variable to 1, the checkbox will be checked; if you set | associated.                        |
|            | it to <b>0</b> , the checkbox will not be checked.      |                                    |

## 5.3.4.15 Combo Box

| Property            | Description                                              | Remarks on Dynamic                 |  |
|---------------------|----------------------------------------------------------|------------------------------------|--|
|                     |                                                          | Properties                         |  |
| Data in the         | Defines the data to be displayed in the drop-down list   | No dynamic properties.             |  |
| Drop-Down List      | of a combo box.                                          |                                    |  |
|                     | A semi-colon ; is used between the data; for example,    |                                    |  |
|                     | aaa;bbb;ccc.                                             |                                    |  |
| Associated Variable | Defines the database variable to which the Combo         | The return value of the expression |  |
|                     | Box graphic control is associated. This variable is int. | or dynamic script is string.       |  |
|                     | The value of the assocated variable refers to the serial | The string refers to the name of   |  |
|                     | number of the data in the drop-down list. The serial     | the variable to which the Combo    |  |
|                     | number starts from 0, followed by 1, 2 from top to       | Box graphic control is associated. |  |

| Property              | Description                                       | Remarks on Dynamic     |
|-----------------------|---------------------------------------------------|------------------------|
|                       |                                                   | Properties             |
|                       | bottom.                                           |                        |
|                       | For example:                                      |                        |
|                       | • When you select the first data in the drop-down |                        |
|                       | list of a combo box, the value of the associated  |                        |
|                       | variable becomes <b>0</b> ;                       |                        |
|                       | • When you select the second data, the value of   |                        |
|                       | the associated variable becomes 1;                |                        |
|                       | • And so on and so forth.                         |                        |
| Height of Data in the | Defines the height between any two data in the    | No dynamic properties. |
| Drop-Down List        | drop-down list.                                   |                        |

## 5.3.4.16 Vector Text

Different from the **Text** control, the **Vector Text** control provides more fontsyou're your selection.

| Property  | Description                      | Remarks on Dynamic                 |  |  |
|-----------|----------------------------------|------------------------------------|--|--|
|           |                                  | Properties                         |  |  |
| Font      | Defines the font for the text.   | No dynamic properties.             |  |  |
| Text      | Defines the text content.        | No dynamic properties.             |  |  |
| Alignment | Defines how the text is aligned. | The return value of the expression |  |  |
|           |                                  | or dynamic script is 1, 2, or 3.   |  |  |
|           |                                  | • 1: Left Alignment                |  |  |
|           |                                  | • 2: Right Alignment               |  |  |
|           |                                  | • 3: Center Alignment              |  |  |

#### 5.3.4.17 Alarm Window

See Chapter 10 Alarms.

## 5.3.4.18 Real-Time Trend

See Section 8.2 Real-Time Data Records.

## 5.3.4.19 Historical Trend

See Section 9.2 Historical Data Records.

#### 5.3.4.20 Historical Data List

See Section 9.2 Historical Data Records.

## 5.3.4.21 Graphics Library

See Chapter 18 Gallery Controls.

### 5.3.5 Events

Based on categories of graphic control components, there are the following types of events, as described in the following table.

| Graphic Component | Event                                                 | Trigger Condition                                        |
|-------------------|-------------------------------------------------------|----------------------------------------------------------|
| Window            | Open                                                  | When you open a window                                   |
|                   | Close                                                 | When you close or hide a window                          |
| Timer             | Timing                                                | When the scheduled time is reached                       |
| Other Controls    | Press                                                 | When you press the left button of the mouse on a graphic |
|                   |                                                       | control                                                  |
|                   | Release When you release the left button of the mouse |                                                          |
|                   |                                                       | control                                                  |

## 5.4 System Variables for the Interface

| Database | Variable Name     | Data Type | Default Value                                                                                          | Description                                                                                                                                       |
|----------|-------------------|-----------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Name     |                   |           |                                                                                                        |                                                                                                                                                   |
| System   | HmiLoopCount      | ulong     |                                                                                                        | The count value of the interface refresh.                                                                                                         |
|          |                   |           |                                                                                                        | The value of this variable adds 1 every time the interface refreshes.                                                                             |
|          | HideMainWindow    | bit       | The default value of this<br>variable is:<br>0: Simulated<br>operation on PC<br>1: Operation on<br>HMI | <ul> <li>1: Menus on the specified<br/>Windows window are hidden.</li> <li>0: Menus on the specified<br/>Windows window are displayed.</li> </ul> |
|          | HmiHeartbeat      | bit       |                                                                                                        | The heart beat of the HMI during<br>operation.<br>The value of this variable changes<br>between 0 and 1 during the interface<br>refresh.          |
|          | HmidbDefCycleTime | ulong     | 500                                                                                                    | The cycle time for the interface refresh (unit: ms).                                                                                              |

## 5.5 System Functions for the Interface

5.5.1 hmi\_window\_show

Original Function: int hmi\_window\_show(char \*window\_name) Function Description: To show a specified window. Return Values: 0 Failed 1 Successful Parameter: window\_name: Name of the target window you want to display. Example: hmi\_window\_show("test")

#### 5.5.2 hmi\_window\_hide

Original Function: int hmi\_window\_hide(char \*window\_name) Function Description: To close a specified window. Return Values: 0 Failed

1 Successful

**Parameter**: *window\_name*: Name of the target window you want to close. **Example**: hmi\_window\_hide("test")

#### 5.5.3 hmi\_window\_show\_modal

Original Function: int hmi\_window\_show\_modal(char \*window\_name) Function Description: To display a modal dialog box. Return Values: 0 Failed 1 Successful Parameter: window\_name: Name of a window.

Example: hmi\_window\_show\_modal("test")

5.5.4 hmi\_window\_exit\_modal

Original Function: int hmi\_window\_exit\_modal(char \*window\_name) Function Description: To exit the Modal dialog box. Call this function when you want to exit a modal dialog box.

Return Values: 0 Failed

1 Successful

Parameter: window\_name: Name of a window.

Example: hmi\_window\_exit\_modal("test")

#### 5.5.5 data\_input\_window

# Original Function: int data\_input\_window(char \*varname, char \*caption, double minvalue, double maxvalue, int dec\_num)

**Function Description**: Function for data input. When you call this function, the **Data Input** window will be displayed. The data you enter in this

window will be assigned as the value for the parameter varname.

#### Return Value: 0 Failed

1 Successful

**Parameters**: *varname*: Name of a variable. The data you enter in the **Data Input** window will be assigned as the value for this parameter.

*caption*: Prompt information to be displayed as the title of the **Data Input** window.

*minvalue*: Minimum value allowed for the data entered. *maxvalue*: Maximum value allowed for the data entered. *dec\_num*: Number of decimals.

Example: data\_input\_window("test.data", "test", 0, 100, 2)

#### 5.5.6 data\_input\_window\_pwd

Original Function: int data\_input\_window\_pwd(char \*varname, char \*caption, double minvalue, double maxvalue, int dec\_num, int passwd)

Function Description: Function for data input (password display option available). When you call this function, the Data Input window will be displayed. The data you enter in this window will be assigned as the value for the parameter varname.

#### Return Value: 0 Failed

1 Successful

**Parameters**: *varname*: Name of a variable. The data you enter in the **Data Input** window will be assigned as the value for this parameter.

*caption*: Prompt information to be displayed as the title of the **Data Input** window.

minuclus Minimum volu

minvalue: Minimum value allowed for the data entered.

maxvalue: Maximum value allowed for the data entered.

dec\_num: Number of decimals.

passwd: 1: Password Display; 0: Normal Display.

Example: data\_input\_window\_pwd("test.data", "test", 0, 100, 2, 1)

#### 5.5.7 text\_input\_window

# **Original Function**: int **text\_input\_window**(**char** \**varname*, **char** \**caption*, **int** *passwd*)

Function Description: Function for text input. When you call this function, the Text Input window will be displayed. The text you enter in this window will be assigned as the value for the parameter varname.

Return Values: 0 Failed

1 Successful

**Parameters**: *varname*: Name of a variable. The text you enter in the **Text Input** window will be assigned as the value for this parameter.

*caption*: Prompt information to be displayed as the title of the **Text Input** window.

passwd: 1: Password Display; 0: Normal Display.

**Example**: text\_input\_window("test.data", "test", 1)

#### 5.5.8 msgbox

**Original Function**: int **msgbox**(**char** \**caption*, **char** \**text*, **int** *type*) **Function Description**: Function for displaying a message box.

Return Values: MSG\_IDOK: You can click on the OK button.

MSG\_IDCANCEL: You can click on the Cancel button.

MSG\_IDABORT: You can click on the **Abort** button.

MSG\_IDRETRY: You can click on the **Retry** button.

MSG\_IDIGNORE: You can click on the Ignore button.

MSG\_IDYES: You can click on the Yes button.

MSG\_IDNO: You can click on the **No** button.

Parameters: *caption*: Title of a window.

text: Message content.

*type*: Type of a message box, valued as follows:

MSG\_MB\_OK: The OK button is displayed.

MSG\_MB\_OKCANCEL: The OK and Cancel buttons are

displayed.

MSG\_MB\_YESNO: The **Yes** and **No** buttons are displayed.

MSG\_MB\_RETRYCANCEL: The Retry and Cancel buttons are

displayed.

MSG\_MB\_ABORTRETRYIGNORE: The **Abort**, **Retry** and **Ignore** buttons are displayed.

|                | MSG_MB_       | YESNOCA      | NCEL: TI   | he <b>Yes</b> ,   | No and Canc             | el butto  | ons |
|----------------|---------------|--------------|------------|-------------------|-------------------------|-----------|-----|
| are displayed. |               |              |            |                   |                         |           |     |
|                | MSG_MB_       | ICONSTOR     | P: The Sto | <b>op</b> icon is | displayed.              |           |     |
|                | MSG_MB_       |              | STION: TH  | he Quest          | <b>ion</b> icon is disp | olayed.   |     |
|                | MSG_MB_       | ICONEXCL     |            | N: The            | Exclamation             | icon      | is  |
| displayed.     |               |              |            |                   |                         |           |     |
|                | MSG_MB_       | ICONINFO     | RMATION    | N: The            | Information             | icon      | is  |
| displayed.     |               |              |            |                   |                         |           |     |
|                | MSG_MB_       | DEFBUTT      | ON1: The   | first butto       | on is defined as        | s default | t.  |
|                | MSG_MB_       | DEFBUTTO     | DN2: The   | e second          | l button is d           | efined    | as  |
| default.       |               |              |            |                   |                         |           |     |
|                | MSG_MB_       | DEFBUTT      | ON3: The   | third butt        | on is defined a         | s defau   | lt. |
| Example: msgb  | ox("Error", " | Open file fa | ailed", MS | G_MB_O            | K)                      |           |     |

5.5.9 hmi\_center\_window

Original Function: int hmi\_center\_window(char \*window\_name) Function Description: Function for displaying the window in the center. Return Values: 0 Failed 1 Successful Parameter: window\_name: Name of a window. Example: hmi\_center\_window("test")

## Chapter 6 Parameters

## 6.1 Overview

Parameter configuration provides the following two functions:

- Modifying the default values of system variables, so as to change the system behaviours;
- 2) Saving the user-defined data, the values of which are still stored in the system even after you restart the system.

The following two sections describe these two functions in details.

## 6.1.1 Modifying System Variables

EASY defines some system variables to control the system operation. For example, the system variable **\$system. HmidbDefCycleTime** defines the cycle time for interface refresh. Each system variable has a factory default value. You can modify the initial values of these system variables to satisfy some special needs.

To modify the default value of a system variable, you need to add a parameter in parameter configuration and associate it with the system variable. For details about adding a parameter, please see section 6.2 Adding a Parameter.

## 6.1.2Saving User-Defined Data

In actual operation, you might need to modify some data and have them saved in the system permanently, so that they stay in the system even after you shut down or restart the system; for example, some key configuration data. Different from system variables, you can define these data in the real-time database.

For saving these user-defined data, EASY provides the following solution:

 Add a parameter in parameter configuration, and associate this parameter with the real-time data you want to save in the system permanently.

For details about adding a parameter, please see section 6.2 Adding a Parameter.

Every time when a new parameter is added, the system will add an internal data in the HMI database. These internal data are generated by the system automatically, and are not reflected on the configuration interface. However, you can view them in the **HMI Database** list on the right side of the **Real-Time Data** 

| Databasa |                |           |   |      |           |            |  |
|----------|----------------|-----------|---|------|-----------|------------|--|
| Database | Data Name      | Value     | ^ | Туре | Data Name | Value      |  |
| testbas1 | test_data1     | x46x00x00 |   | mem  | a1        | ΟγγγγΥΥΥΥΥ |  |
| testbas1 | data1          | 70        |   |      |           |            |  |
| testbas1 | data2          | 20        |   |      |           |            |  |
| testbas1 | data3          | 40        |   |      |           |            |  |
| testbas1 | data4          | 11        |   |      |           |            |  |
| testbas1 | data5          | 15        |   |      |           |            |  |
| testbas1 | yewei_alarm    | 0         |   |      |           |            |  |
| system   | Logic_True     | 1         |   |      |           |            |  |
| system   | Logic_False    | 0         |   |      |           |            |  |
| system   | Logic_And      | 1         |   |      |           |            |  |
| system   | Logic_Or       | 2         |   |      |           |            |  |
| system   | Logic_Xor      | 3         |   |      |           |            |  |
| system   | Logic_Not      | 4         |   |      |           |            |  |
| system   | Arithm_Add     | 1         |   |      |           |            |  |
| system   | Arithm_Sub     | 2         |   |      |           |            |  |
| system   | Arithm_Mul     | 3         |   |      |           |            |  |
| system   | Arithm_Div     | 4         |   |      |           |            |  |
| system   | Compare_More   | 0         |   |      |           |            |  |
| system   | Compare_More_E | 1         |   |      |           |            |  |
| system   | Compare_Less   | 2         |   |      |           |            |  |
| system   | Compare_Less_E | 3         |   |      |           |            |  |
| system   | Compare_Equal  | 4         |   |      |           |            |  |
| system   | Compare_Not_E  | 5         |   |      |           |            |  |
| system   | Double_Const_0 | 0.00      |   |      |           |            |  |
| system   | HmiLoopCount   | 92        |   |      |           |            |  |
| system   | HideMainWindow | 0         |   |      |           |            |  |
| system   | CurDateTime    | 12470174  |   |      |           |            |  |
| system   | loCycleTime    | 500       |   |      |           |            |  |
| system   | FbdCycleTime   | 100       |   |      |           |            |  |
| system   | PlcCycleTime   | 100       |   |      |           |            |  |
| system   | FbdEnable      | 1         | ~ |      |           |            |  |

Monitoring window during offline or online simulation, as shown in Figure 6.1.



At the system startup, the user-defined real-time data which are defined in parameters will be copied to the corresponding HMI memory automatically.

The reason why the system automatically generates the data in the HMI memory is mainly for the consideration of users' potential needs of "cancellation". For example, if you modify a parameter on the interface, the corresponding data in the real-time database will be modified accordingly; however, the corresponding data in the HMI memory remains the same as before your modification. If you feel like cancelling the modification, you can call the **rtdb\_param\_mem\_to\_rtdb** function to copy the data from the HMI memory to the real-time database.

2. To save a data after you modify it, you can call the **sys\_save\_param** function to save the data to a device.

To prepare for potential future cancellation, you can call the **rtdb\_param\_rtdb\_to\_mem** function to copy the modified data to the HMI memory, so as to keep the data in the real-time database and that in the HMI memory consistent, ready for the next time cancellation.

 To cancel the data modification, you can call the rtdb\_param\_mem\_to\_rtdb function to copy the data automatically generated in the HMI memory to the real-time database.

## 6.2 Adding a Parameter

Each added parameter must be associated with a variable, either a system variable defined internally in the system, or the user-defined data defined in the real-time database. If a parameter is associated with a system variable, the parameter is added to modify the default value of the system variable (see sction 6.1.1 Modifying System Variables for details). If a parameter is associated with the user-defined real-time data, the parameter is added to store the real-time data permanently in the system (see section 6.1.2 Saving User-Defined Data for details).

To add a parameter, do as follows:

1) Select **Parameter** on the left side of the **Project Manager** window, and then right-click in the list pane on the right side of the window, and you'll see a right-click menu as shown in Figure 6.2.



Figure 6.2

2) Select **Add Data**, and you'll see a dialog box as shown in Figure 6.3.

| Parameter Settir       | ıg      |          | × |
|------------------------|---------|----------|---|
| -Data Setting          |         |          | ] |
| Database Name:         |         |          |   |
| Realtime Data<br>Name: | <b></b> |          |   |
| Initial Value:         |         |          |   |
|                        |         |          |   |
|                        | 1       |          |   |
|                        | :       | X Cancel |   |
|                        |         |          |   |



The configuration parameters are described as follows:

- **Database Name**: Name of the database which stores the variable to which the parameter is associated.
- Real-Time Data Name: Name of the variable to which the parameter is associated.

 Initial Value: Initial value of the variable to which the parameter is associated. The initial value is 0 if no specific initial value is configured here. Note: If the initial value configured in the real-time database is different from the initial value here, the system uses the initial value configured here.

## 6.3 Deleting a Parameter

To delete a parameter, do as follows:

 Select **Parameter** on the left side of the **Project Manager** window, and then right-click on the parameter you want to delete in the list pane on the right side of the window.

You'll see a right-click menu as shown in Figure 6.4.





2) Select **Delete Data**, and the selected parameter will be deleted.

## 6.4 Modifying a Parameter

To modify a parameter, do as follows:

 Select **Parameter** on the left side of the **Project Manager** window, and then right-click on the parameter which you want to modify in the list pane on the right side of the window.

You'll see a right-click menu as shown in Figure 6.5.



Figure 6.5

2) Select **Modify** to modify the parameter according to your needs.

## 6.5 System Functions for Parameter Configuration

6.5.1 rtdb\_param\_mem\_to\_rtdb

Original Function: int rtdb\_param\_mem\_to\_rtdb() Function Description: To copy the data from the HMI memory to the real-time database as the value of parameters.

Return Value: 0 Failed

Successful

Parameter: None

Example: rtdb\_param\_mem\_to\_rtdb()

1

6.5.2 rtdb\_param\_rtdb\_to\_mem

#### Original Function: int rtdb\_param\_rtdb\_to\_mem()

**Function Description**: To copy the value of parameters from the real-time database to the HMI memory.

Return Value: 0 Failed

1 Successful

Parameter: None

Example: rtdb\_param\_rtdb\_to\_mem()

#### 6.5.3 sys\_save\_param

Original Function: int sys\_save\_param() Function Description: To save parameter data to devices. Return Value: 0 Failed 1 Successful Parameter: None Example: sys\_save\_param()

# Chapter 7 C Language Programming

## 7.1 Overview

EASY supports powerful C language programming. Considering that all user-defined scripts in the system are based on the C language, you can make full use of the powerful, flexible and highly efficient C language programming to achieve complicated applications most of which are possible only in the Industrial Personal Computer (IPC).

At present, EASY supports the C language programming in the following aspects:

- Direct C language programming in the scripts for dynamic properties and events for graphic components
- Support of user-defined external C-language source files and library files
- Support of user-defined external expansion modules (which allows you to use your own communication protocols) (see Chapter 14 Expansion Module Programming for details)

## 7.2 Script Programming

During the configuration, you can configure dynamic property and event scripts for graphic components. All of these scripts for dynamic properties and events are compiled based on the C language.

In these scripts, you can:

- Use all the rules defined according to the C language syntax; for example, to define static variables or array variables, or to use the ? expressions in the scripts.
- Directly call the standard function library provided by the C language; for example, to call the functions such as strcmp, sprintf, malloc, or fopen.
- Directly access the data defined in the real-time database and interface database. For accessing the data in the real-time database, see section 3.5 Data Referencing for details. For accessing the data in the interface database, see section 4.4 Data Referencing for details.
- Call the internal system functions provided by the EASY system; for example, the **hmi\_window\_show** function.
- Directly call the user-defined functions defined in external C-Language source files and library files. For details, see section 7.3 External C Language Source

Files and Library Files.

Programming in the scripts in EASY is not much different from the usual C language programming. Just pay attention to the usage of the following two aspects:

- Array Variables
- \$\$HmiCommit and \$\$HmiReload

## 7.2.1 Array Variables

EASY provides array variables, which are similar to the arrays in the C language. The difference lies only in the data type: The C language supports defining arrays for various types of data; for example, you can define int arrays (for example, int array[10]) or float arrays (for example, float array[20]). However, the array variables in EASY are all uchar. Therefore, while defining array variables in the real-time database, consider the data length as the number of bytes.

The following figure shows an example of defining an array variable with the name as **array\_test** in the real-time database. The data length is **50**, as shown in Figure 7.1.

| Data Setting   | arrav test | ☐ Alias |
|----------------|------------|---------|
| Data Type:     | array      | •       |
| Data Length:   | 50         |         |
| Initial Value: | 0          |         |
| Alias:         |            |         |
| Description:   |            |         |
|                |            |         |
| 1              | OK 🏾 🌋 Can | cel     |

Figure 7.1

You can consider this example as defining the array **unsigned char array\_test[50]** in the C language.

After defining array variables, you can operate on the array variables in the real-time database as how you operate on the arrays of the C language. For example, you can carray out the following operation (supposing that the database name is **test**):

\$test.array\_test[2] = 5;

memcpy(\$test.array\_test, "\x10\x11\x12\x13\x14", 5);

 $((int^{*})(\text{stest.array_test} + 4)) = 0x1234;$ 

**Note:** At present, the array variables can only be used in interface configuration scripts and external C language applications.

## 7.2.2 **\$\$HmiCommit** and **\$\$HmiReload**

#### 7.2.2.1 Processing the Script

EASY allows you to configure dynamic property and event scripts for graphic components. The EASY system process these scripts as follows:

- Before executing a user-compiled script, the system first scans the script for the data referenced from the real-time database and the interface database (namely, the variables starting with \$), obtains the values of these data from the database and save them to temporary variables, and then replaces all the referenced data with the corresponding temporary variables.
- 2. The system executes the user-defined script.
- 3. The system determines whether the user-defined script changes the values of the database variables. If yes, the system writes the new values into the database.

For example, the following is a user-defined script:

\$test.float\_var1 = 10.5;

The system processing of the script above can be translated into the following pseudo code (get\_data\_from\_database and set\_data\_to\_database are pseudo codes: get\_data\_from\_database means to read data from the database, and set\_data\_to\_database means to write data into the database):

int tmp\_var1 = get\_data\_from\_database("test.int\_var1"); int old\_tmp\_var1 = tmp\_var1; float tmp\_var2 = get\_data\_from\_database("test.float\_var1"); float old\_tmp\_var2 = tmp\_var2;

tmp\_var1++; tmp\_var2 = 10.5;

IF (tmp\_var1 != old\_tmp\_var1)

```
set_data_to_database("test.int_var1", tmp_var1);
ENDIF
IF (tmp_var2 != old_tmp_var2)
set_data_to_database("test.float_var1", tmp_var2);
ENDIF
```

The example above shows that the system accesses the database only at the beginning (obtaining the values of the referenced variables) and the end (saving the modified values into the database) of the script, but not the whole process of executing the script. This, to some extent, ensures the system efficiency, saving the trouble of accessing the database after executing each line of the script.

Generally speaking, this way of script processing ensures high system efficiency. However, it also creates some problems; for example, the data values changed by the execution of the script are not written into the database immediately, but only at the end of the script.

For solving this kind of problems, EASY provides the **\$\$HmiCommit** and **\$\$HmiReload** functions.

#### 7.2.2.2 \$\$HmiReload

Call the **\$\$HmiReload** function to reaccess the database for the values of all the data referenced in the script and then assign these values to the variables currently used in the script (actually the temporary variables).

Take the following script for example:

```
data_input_window("test.float_var1", "test", 0, 100, 2);
if ($test.float_var1 > 50.0)
{
    $test.int_var1 = 1;
}
else
{
    $test.int_var1 = 0;
}
```

In which, **data\_input\_window** is a data input function provided by the EASY system. After calling this function, you will see the **Data Input** window where you can enter data. In this example, the data you enter will be assigned to the database variable **test.float\_var1**. The system processing of the script above can be translated into the pseudo codes as follows:

```
int tmp_var1 = get_data_from_database("test.int_var1");
int old_tmp_var1 = tmp_var1;
float tmp_var2 = get_data_from_database("test.float_var1");
float old_tmp_var2 = tmp_var2;
```

data\_input\_window("test.float\_var1", "test", 0, 100, 2); /\* Note: This function operates on the database by directly writing the value you enter to the database variable test.float\_var1 \*/

if (tmp\_var2 > 50.0) /\*Here tmp\_var2 is still used as the value of the variable test.float\_var1; however, the value of the database variable test.float\_var1 has been modified by the data\_input\_window function. The value assignment here is obviously wrong\*/

```
{
    tmp_var1 = 1;
}
else
{
    tmp_var1 = 0;
}
IF (tmp_var1 != old_tmp_var1)
    set_data_to_database("test.int_var1", tmp_var1);
ENDIF
IF (tmp_var2 != old_tmp_var2)
    set_data_to_database("test.float_var1", tmp_var2);
ENDIF
```

In the pseudo codes above displayed in bold, the data\_input\_window function writes the data entered directly to the database variable test.float\_var1. However, the IF condition followed immediately if (tmp\_var2 > 50.0) doesn't reaccess the database to obtain the modified value of the variable test.float\_var1, but instead uses tmp\_var2 (value obtained from the database at the beginning of the script) as the value of the variable. Obviously, the value assignment is wrong. In this case, you can call the \$\$HmiReload function to reaccess the database forcibly.

The modified script is as follows:

```
data_input_window("test.float_var1", "test", 0, 100, 2);
$$HmiReload;
if ($test.float_var1 > 50.0)
{
    $test.int_var1 = 1;
}
else
{
    $test.int_var1 = 0;
}
```

The system processing of the above modified script is translated into the following pseudo codes:

```
int tmp_var1 = get_data_from_database("test.int_var1");
int old_tmp_var1 = tmp_var1;
float tmp_var2 = get_data_from_database("test.float_var1");
float old_tmp_var2 = tmp_var2;
```

data\_input\_window("test.float\_var1", "test", 0, 100, 2); /\* Note: This function operates on the database by directly writing the value you enter to the database variable test.float\_var1 \*/

tmp\_var1 = get\_data\_from\_database("test.int\_var1"); tmp\_var2 = get\_data\_from\_database("test.float\_var1");

if (tmp\_var2 > 50.0) /\*Here tmp\_var2 is the modified value of the database variable test.float\_var1 after the data\_input\_window function is called\*/

```
{
    tmp_var1 = 1;
}
else
{
    tmp_var1 = 0;
}
IF (tmp_var1 != old_tmp_var1)
```

```
set_data_to_database("test.int_var1", tmp_var1);
ENDIF
IF (tmp_var2 != old_tmp_var2)
set_data_to_database("test.float_var1", tmp_var2);
ENDIF
```

In the pseudo codes above, the part in italic indicates that the **\$\$HmiReload** function is called, which means that the system reaccesses the database to obtain the values of the variables **test.int\_var1** and **test.float\_var1** and assign them accordingly to **tmp\_var1** and **tmp\_var2**. In this way, **tmp\_var2** matches correctly to the modified value of the variable **test.float\_var1**, thus the further value assignment of the variable **test.float\_var1** would be correct.

#### 7.2.2.3 **\$\$HmiCommit**

Call the **\$\$HmiCommit** function to write the current values of all the referenced data in to the database.

Take the following script for example:

\$test.float\_var1 = 20.5;

user\_func();

In which, **user\_func** is a user-defined function. It can be defined as follows:

```
void user_func()
{
    .....
    if ((*(float *)hmidb_get_data_value("test.float_var1")) >= 20.0)
    {
        .....
    }
    .....
}
```

In which, **hmidb\_get\_data\_value** is a system function provided by EASY. This function is for obtaining the data value from the database. The system processing of the script above can be translated in the following pseudo codes:

float tmp\_var1 = get\_data\_from\_database("test.float\_var1"); float old\_tmp\_var1 = tmp\_var1;

```
tmp_var1 = 20.5;
user_func();
IF (tmp_var1 != old_tmp_var1)
    set_data_to_database("test.float_var1", tmp_var1);
ENDIF
```

Let's take a look at the bold codes in the pseudo codes above. The script is supposed to first set the value of the variable **test.float\_var1** to **20.5**, and then call the function **user\_func**, and further the function **hmidb\_get\_data\_value** to obtain the current value (which should be **20.5**) of the variable **test.float\_var1**, and then process it accordingly based on the value obtained.

But from the pseudo codes above, we can see that **\$test.float\_var1 = 20.5**; is replaced by **tmp\_var1 = 20.5**; in the script. During the system processing, the value of **tmp\_var1** is modified; however, the modified value is not written into the database immediately (as stated ealier, the modified value is written into the database only at the end of the script). Therefore, the value of **test.float\_var1** in the database is still the value before the modification. The value of **test.float\_var1** obtained by the function **hmidb\_get\_data\_value** of the function **user\_func** is also the value before the modification, but not the user-defined value **20.5**.

To address this issue, you can call the function **\$\$HmiCommit** to force the system to write the data into the database immediately.

The modified script is as follows:

\$test.float\_var1 = 20.5; \$\$HmiCommit; user\_func();

The system processing of the modified script can be translated into the following pseudo codes:

float tmp\_var1 = get\_data\_from\_database("test.float\_var1"); float old\_tmp\_var1 = tmp\_var1;

tmp\_var1 = 20.5;

set\_data\_from\_database("test.float\_var1", tmp\_var1);user\_func();

IF (tmp\_var1 != old\_tmp\_var1)

set\_data\_to\_database("test.float\_var1", tmp\_var1);

ENDIF

The italic codes above is the result of calling the function **\$\$HmiCommit**. It forces the system to immediately write the value of **tmp\_var1** into the database data **test.float\_var1**. In this case, when the function **user\_func** accesses the database for the value of **test.float\_var1**, it obtains the latest value.

## 7.3 External C Language Source Files and Library Files

## 7.3.10verview

You can define one or more complicated algorithms or common functions into one or more external C source or library files. You just simply assign these external C source or library files during the compiling, and EASY can integrate these files into the system, so that they can be called directly by the dynamic property and event scripts of graphic components during interface configuration.

To assign the external C source or library files during the compiling, do as follows:

In the Project Manager window, select Tools and then Compile a Project, or simply

click on the compiling button in the tool bar, and you will see the **Compile a Project** dialog box as shown in Figure 7.2.

| Compile                                                                                                                                                 |         |          | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---|
| Compile Choice<br>Additional Define:<br>Additional H File:<br>Additional Source<br>File and<br>Lib(Windows):<br>Additional Source<br>File and Lib(HMI): |         |          |   |
|                                                                                                                                                         |         |          |   |
| 4                                                                                                                                                       | Compile | X Cancel |   |



If no external C source or library files are used in the project, then you do not need to configure any of the configuration items in **Compiling Options**. If they are used, then you need to configure one of more of the configuration items, which are described as follows:

- Additional Definition: Equal to the compiling options in the C language; for example, -D\_DEBUG –D\_MYDEF –Ic:\myinclude.
- Additional Header File: To define the header file to be used in the project. Only one header file can be added.
- Additoinal Source files and libraries (Windows): To define the external C source or library files to be added for running on the Windows platform (for both offline and online simulation). Multiple files can be added at the same time.
- Additoinal Source files and libraries (HMI): To define the external C source or library files to be added for running on the HMI. Multiple files can be aded at the same time.

## 7.3.2Examples

This section uses an example to explain how to use external C source or library files during the EASY configuration.

This example shows the following function: to implement the BubbleSort (BS) algorithm in the external C source file, and then call this algorithm during the HMI configuration to sort the data in the real-time database.

1. Create a C source file **sort.c**, and implement the BS algorithm on the long and char data arrays. The contents of the source file go as follows:

```
void bubble_sort( long array[], int length)
   {
        unsigned char exchange; /* To record whether the element exchange occurs in the first
round traversal */
        long temp;
        int i, j;
        for (i = 1; i < length; i++)
        {
             exchange = 0;
             for (j = \text{length-1}; j \ge i; j--)
             {
                 if (array[j] < array[j-1])
                 {
                      exchange = 1;
                      temp = array[j];
                      array[j] = array[j-1];
                      array[j-1] = temp;
                 }
             }
             /* The sorting ends if no element exchange in this round of traversal. */
             if (0 == exchange)
                 break;
        }
   }
```

2. Add an external C header file **sort.h**, which contents go as follows:

| #ifndef _SORT_H_                                   |
|----------------------------------------------------|
| #define _SORT_H_                                   |
|                                                    |
| extern void bubble_sort(long array[], int length); |
|                                                    |
| #endif                                             |
|                                                    |
|                                                    |

3. In the **Project Manager** window, add a new database **test** under the **Real-Time Database** node, and then add 5 long data, **data1** to **data5**, with the initial values as 70, 20, 40, 11, and 15 individually. After you add all the 5 data, you will see a window as shown in Figure 7.3.

| data name | data type | length | initial value | alias |
|-----------|-----------|--------|---------------|-------|
| datal     | long      | 4      | 70            |       |
| data2     | long      | 4      | 20            |       |
| data3     | long      | 4      | 40            |       |
| data4     | long      | 4      | 11            |       |
| data5     | long      | 4      | 15            |       |
|           |           |        |               |       |
|           |           |        |               |       |



4. In the **Project Manager** window, add an interface **test**, as shown in Figure 7.4.

| Vi | ndow Sett   | ing                                          | × |
|----|-------------|----------------------------------------------|---|
|    | -Window Inf | ormation                                     | 1 |
|    | Name:       | test                                         |   |
|    | Title:      | 测试                                           |   |
|    | File Name:  | test.xml                                     |   |
|    | 🔽 Startup   | Showing 🔽 Create File Auto 🥅 Disable Showing |   |
|    |             | V OK X Cancel                                |   |



5. In the **test** interface, add a button graphic component, and then compile the following script for the **Press** event for this button:

long array[5];

array[0] = \$test.data1; array[1] = \$test.data2; array[2] = \$test.data3; array[3] = \$test.data4; array[4] = \$test.data5; bubble\_sort(array, 5); \$test.data1 = array[0]; \$test.data2 = array[1]; \$test.data3 = array[2]; \$test.data4 = array[3]; \$test.data5 = array[4];

6. In the Project Manager window, select Tools and then Compile a Project, or

click on the compiling button in the tool bar, and you'll see a dialog box as shown in Figure 7.5.

You need to configure the four configuration items accordingly. (Suppose that the **sort.c** and **sort.h** files are kept in the **C:\** directory).

| Compile                                                                                                                                                 |                                         | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|
| Compile Choice<br>Additional Define:<br>Additional H File:<br>Additional Source<br>File and<br>Lib(Windows):<br>Additional Source<br>File and Lib(HMI): | C:\sort.h<br>"C:\sort.c"<br>"C:\sort.c" |   |
|                                                                                                                                                         |                                         |   |
|                                                                                                                                                         | Scompile Cancel                         | > |

Figure 7.5

Click on the Start Compiling button.

 Select Tools and Offline Simulation to show the configuration interface. Select Window and then Real-Time Display to display the real-time data monitoring window, as shown in Figure 7.6.

In this window, you can see the values of data1 to data5 are 70, 20, 40, 11, 15 accordingly:

| Database           | Data Name      | Value     | ~ | Type | Data Name | Value      |  |
|--------------------|----------------|-----------|---|------|-----------|------------|--|
| taethae1           | tect data1     | ×46×00×00 |   | mem  | o1        | 0.000      |  |
| teethae1           | data1          | 70        |   | man  | or i      | 0333371111 |  |
| testbas1           | data1          | 20        |   |      |           |            |  |
| teethac1           | data3          | 40        |   |      |           |            |  |
| testhas1           | data4          | 11        |   |      |           |            |  |
| testbas1           | data5          | 15        |   |      |           |            |  |
| testhas1           | vewei alarm    | 0         |   |      |           |            |  |
| system             | Logic True     | 1         |   |      |           |            |  |
| system             | Logic False    | 0         |   |      |           |            |  |
| system             | Logic And      | 1         |   |      |           |            |  |
| system             | Logic_Or       | 2         |   |      |           |            |  |
| system             | Logic_Xor      | 3         |   |      |           |            |  |
| system             | Logic_Not      | 4         |   |      |           |            |  |
| system             | Arithm_Add     | 1         |   |      |           |            |  |
| system             | Arithm_Sub     | 2         |   |      |           |            |  |
| system             | Arithm_Mul     | 3         |   |      |           |            |  |
| system             | Arithm_Div     | 4         |   |      |           |            |  |
| system             | Compare_More   | 0         |   |      |           |            |  |
| system             | Compare_More_E | 1         |   |      |           |            |  |
| system             | Compare_Less   | 2         |   |      |           |            |  |
| system             | Compare_Less_E | 3         |   |      |           |            |  |
| system             | Compare_Equal  | 4         |   |      |           |            |  |
| system             | Compare_Not_E  | 5         |   |      |           |            |  |
| system             | Double_Const_0 | 0.00      |   |      |           |            |  |
| system             | HmiLoopCount   | 92        |   |      |           |            |  |
| system             | HideMainWindow | 0         |   |      |           |            |  |
| system             | CurDateTime    | 12470174  |   |      |           |            |  |
| system             | loCycleTime    | 500       |   |      |           |            |  |
| system             | FbdCycleTime   | 100       |   |      |           |            |  |
| system             | PIcCycleTime   | 100       |   |      |           |            |  |
| system             | FbdEnable      | 1         | ~ |      |           |            |  |
| )atabase<br>'alue: |                | ata Set   | 1 | Data |           | Value:     |  |

Figure 7.6

Click on the button in the window, and you can see that the values of data1 to data5 change to 11, 15, 20, 40, and 70 accordingly, as shown in Figure 7.7. The data values are sorted in sequence.

| Database | Data Name      | Value     | ~ | Туре | Data Name | Value                                   |  |
|----------|----------------|-----------|---|------|-----------|-----------------------------------------|--|
| testbas1 | test_data1     | x46x00x00 |   | mem  | a1        | 000000000000000000000000000000000000000 |  |
| testbas1 | data1          | 70        |   |      |           |                                         |  |
| testbas1 | data2          | 20        |   |      |           |                                         |  |
| testbas1 | data3          | 40        |   |      |           |                                         |  |
| testbas1 | data4          | 11        |   |      |           |                                         |  |
| testbas1 | data5          | 15        |   |      |           |                                         |  |
| testbas1 | yewei_alarm    | 0         |   |      |           |                                         |  |
| system   | Logic_True     | 1         |   |      |           |                                         |  |
| system   | Logic_False    | 0         |   |      |           |                                         |  |
| system   | Logic_And      | 1         |   |      |           |                                         |  |
| system   | Logic_Or       | 2         |   |      |           |                                         |  |
| system   | Logic_Xor      | 3         |   |      |           |                                         |  |
| system   | Logic_Not      | 4         |   |      |           |                                         |  |
| system   | Arithm_Add     | 1         |   |      |           |                                         |  |
| system   | Arithm_Sub     | 2         |   |      |           |                                         |  |
| system   | Arithm_Mul     | 3         |   |      |           |                                         |  |
| system   | Arithm_Div     | 4         |   |      |           |                                         |  |
| system   | Compare_More   | 0         |   |      |           |                                         |  |
| system   | Compare_More_E | 1         |   |      |           |                                         |  |
| system   | Compare_Less   | 2         |   |      |           |                                         |  |
| system   | Compare_Less_E | 3         |   |      |           |                                         |  |
| system   | Compare_Equal  | 4         |   |      |           |                                         |  |
| system   | Compare_Not_E  | 5         |   |      |           |                                         |  |
| system   | Double_Const_0 | 0.00      |   |      |           |                                         |  |
| system   | HmiLoopCount   | 92        |   |      |           |                                         |  |
| system   | HideMainWindow | 0         |   |      |           |                                         |  |
| system   | CurDateTime    | 12470174  |   |      |           |                                         |  |
| system   | loCycleTime    | 500       |   |      |           |                                         |  |
| system   | FbdCycleTime   | 100       |   |      |           |                                         |  |
| system   | PlcCycleTime   | 100       |   |      |           |                                         |  |
| system   | FbdEnable      | 1         | ~ |      |           |                                         |  |

Figure 7.7

## 7.4 Script Compiling

After configuration, the project needs to be compiled before it can run. If the compiling is successful, the following information will be displayed in the **Compile a Project** dialog box, as shown in Figure 7.8:

LCGen Version:1.7.0, Copyright EASY Inc(2004-2008).

#### Use of deprecated SAXv1 function ignorableWhitespace

| Compile                                        |                                                                           | ×            |
|------------------------------------------------|---------------------------------------------------------------------------|--------------|
| Compile Choice                                 |                                                                           |              |
| Additional Define:                             |                                                                           |              |
| Additional H File:                             | C:\sort.h                                                                 | $\mathbf{P}$ |
| Additional Source<br>File and<br>Lib(Windows): | "C:\sort.c"                                                               |              |
| Additional Source<br>File and Lib(HMT)         | "C:\sort.c"                                                               | $\mathbf{P}$ |
|                                                |                                                                           |              |
| Compile complete, c                            | output information:                                                       |              |
| LCGen Version:1.8.0<br>Use of deprecated S     | ),Copyright Shuntang Inc(2004-2008).<br>MXv1 function ignorableWhitespace |              |
|                                                | Scompile 🌋 Cancel                                                         |              |

Figure 7.8

If the above information is not displayed, it means the compiling fails; in this case, you need to find out what causes the failure.

Let's take an example here to explain how to analyze what causes the compiling failure based on the error information.

Suppose that you add a button **button1** in the **test** interface and that the following script is configured for the **Press** event for this button:

\$test.data1 = 1

The problem of this script is that the statement doesn't end with the semi-colon ;, which is required by the syntax of the C language. This script will cause the following error prompt during the project compiling:

LCGen Version:1.7.0, Copyright EASY Inc(2004-2008).

Use of deprecated SAXv1 function ignorableWhitespace

C:\Documents and Settings\JiangJian\Desktop\test\_c\compile\event\_funcs.c: In function `widget test button1 click':

C:\Documents and Settings\JiangJian\Desktop\test\_c\compile\event\_funcs.c:26: error: syntax

error before '}' token

C:\Documents and Settings\JiangJian\Desktop\test\_c\compile\event\_funcs.c: In function `widget\_test\_button1\_click':

C:\Documents and Settings\JiangJian\Desktop\test\_c\compile\event\_funcs.c:26: error: syntax error before '}' token

The above error prompt indicates which script causes the compiling failure. The string in bold **widget\_test\_button1\_click** is divided into four groups by the underscore, which are explained as follows:

- widget: Fixed prefix.
- test: Name of an interface.
- **button1**: Name of a graphic control component.
- click: Dynamic property or event of the graphic control component.
   It refers to the **Press** event here.

The above error prompt indicates that some error occurs during the compiling of script for the **Press** event of the **button1** button in the **test** interface.

## 7.5 Script Commissioning

## 7.5.10verview

During the program development, you might get some script-related issues; for example, the script fails to run or the script execution turns out different from what you expected. In this case, you might want to print out some important information for analyzing what causes the script execution error.

Considering this, EASY provides the **Commissioning Output Background** tool. You can add the printing commissioning information anywhere in the script, and these information will be exported to the commissioning window of the **Commissioning Output Background** tool.

The following of this section describes in details how to use this tool.

1. Start the Commissioning Output Background tool, as follows:

After EASY is installed, click on **Start** > **EASY Industrial Control Software** > **Commissioning Output Background**, as shown in Figure 7.9.



Figure 7.9

And then you'll see the **EASY Printing Commissioning** Wnidow, as shown in Figure 7.10.

| - * 打印调     | 武窗口 |    |
|-------------|-----|----|
| I           |     |    |
|             |     | ~  |
| <u>&lt;</u> | 清除  | 退出 |



The printing commissioning information will be exported and displayed in this window.

 Set the IP address of the commissioning host (namely, the computer on which the Commissioning Output Background tool is running.)

You can call the function **debug\_printf** to export the commissioning information. But before that, you must call the function **debug\_set\_ip** to set the IP address of the commissioning host on which the **Commissioning Output Background** tool is running.

You can call the function **debug\_set\_ip** any time, just on one condition that it's called before the function **debug\_printf**. In addition, the function **debug\_set\_ip** can be called more than one time, and each calling will overwrite the IP address set by the previous calling. For details about the function **debug\_set\_ip**, see section 7.5.2 System Functions for Script Commissioning.

3. Call the function **debug\_printf** to export the commissioning information whenever necessary.

For details about the function **debug\_printf**, see section 7.5.2 System Functions for Script Commissioning.

## 7.5.2System Functions for Script Commissioning

## 7.5.2.1 debug\_set\_ip

**Original Function**: void **debug\_set\_ip**(**const char** \**ip*)

Function Description: To set the IP address of the host on which the

Commissioning Output Background tool is running.

Return Value: None.

**Parameter**: *ip*: IP address of the host on which the **Commissioning Output Background** tool is running.

Example: debug\_set\_ip("127.0.0.1");

#### 7.5.2.2 debug\_printf

**Original Function**: void **debug\_printf**(**const char** \**format*, ...)

**Function Description**: To export the printing commissioning information to the commissioning host. Use this function in the same way as the library function **printf** in the standard C language.

Return Value: None.

**Parameter**: *format*: String for format control. Same as for the library function **printf** in the standard C language.

...: Optional parameter. Same as for the library function **printf** in the standard C language.

**Example**: debug\_printf("i=%d\n", i);

## Chapter 8 Real-Time Trend Curves

## 8.1 Overview

In the real-time operation, you might often need to observe how the data changes within a period of time. A very simple and straightforward way is to draw real-time trend curves for these data. The change in the curve shows vividly the data change trend. Because of this, the real-time trend curve is a very important part in the industrial control system.

EASY provides powerful real-time trend curve functions. It not only provides you an easy way to draw real-time trend curves, but also allows you to save the data for future data analysis according to your needs.

EASY offers the following two solutions for implementing the real-time trend curve functions:

1. Function interface provided by the system

EASY provides a set of function interfaces. You can select the programming that best suits your needs to realize real-time trend curves.

These are the advanced functions, highly flexible and suitable for some special situations, and thus are not introduced in details here.

2. System default method

The system default method for realizing real-time trend curves is simple and easy to use. You just need to do some simple settings during the configuration; almost no programming involved at all.

The following of this chapter describes this method in details.

If you select the system default method for realizing real-time trend curves, please follow the procedure below:

- 1. Create real-time data records for the data you want to draw real-time trend curves.
- 2. During the interface configuration, use the **Real-Time Trend Curve** control to display the real-time trend curves of the selected data.
- (Optional step) Save the real-time data records if necessary, and use the Real-Time Trend Curve control to view the real-time trend curves of the selected data.

The following sections will describe these three steps in details.
### 8.2 Definition of Real-Time Data Records

You can define one or more real-time data records, and each can contain one or more data for which real-time trend curves needs to be drawn. All the data in one real-time data record share some common properties; for example, they will all be collected with the same time cycle.

You can also define a data into different real-time data records. In this case, this data has various different properties. For example, a data needs to be collected 100 times every 1 second on one real-time trend curve, but needs to be collected 200 times every 5 seconds on another real-time trend curve. In this case, you will need to define this data into two separate data records.

During the interface configuration, each **Real-Time Trend Curve** control associates one real-time data record only. However, this **Real-Time Trend Curve** control can display all the data defined in the real-time data record to which this control associates.

# 8.2.1Creating a Data Record

To create a data record, do as follows:

 Select the Real-Time Data Record node on the left side of the Project Manager window, and right-click on it.

And you will see a right-click menu as shown in Figure 8.1.



Figure 8.1

2) Select Create a Data Record, and you will see a dialog box as shown in Figure

8.2.

| Re | ealtime Data Record                                                                                                                                               | × |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | Realtime Data Record Setting      Record Name:      Default Record Period:      1000      Period Variable:      Control Variable:      Record Data Size:      100 | 2 |
|    | V OK Cancel                                                                                                                                                       |   |

Figure 8.2

The parameters in Figure 8.2 are described as follows:

- **Record Name**: Name of a real-time data record.
- **Default Record Cycle**: Default time cycle for collecting data (unit: ms), which defines the time cycle for the system to collect data for all the data defined in a real-time data record.
- Cycle Variable: You can associate a time cycle for data collection to a real-time database variable. In this case, the time cycle can change dynamically during the system operation. If no cycle variable is defined, the value set for Default Record Cycle will be used as the collection cycle; otherwise, the value set for Cycle Variable will be used as the collection cycle, which turns the value set for Default Record Cycle invalid.

• **Control Variable**: controls how a data record operates. It is valued as below:

0: means to start collecting data for all the data defined in the real-time data record.

1: means to stop collecting data for all the data defined in the real-time data record.

2: means to empty the data collected for all the data defined in the real-time data record.

Data Collection Volume: defines how many times the data is to be collected for all the data defined in the data record. For example, if you set Default Record Cycle to 1000 and Data Collection Volume to 100, that means data will be collected for all the data defined in the data record every 1000 ms and 100 data will be collected the most. If more than 100 data are collected, the later collected data will overwrite the previously collected data. For example, if the 101<sup>st</sup> data is collected, the 1<sup>st</sup> collected data will be replaced.

# 8.2.2Adding Data

After you create a data record, you will need to add data into this data record. To add

data, do as follows:

 Select a real-time data record on the left side of the Project Manager window, and right-click in the list pane on the right side of the window.

And you will see a right-click menu as shown in Figure 8.3.





2) Select Add Data, and you will see a dialog box as shown in Figure 8.4.

| Realtime Data Record                             | × |
|--------------------------------------------------|---|
| Data Setting<br>Database Name:<br>Realtime Data: | 2 |
| oK 🌋 Cancel                                      |   |

Figure 8.4

3) Select data from the real-time database to add into this data record.

# 8.2.3Deleting Data

To delete a data defined in a real-time data record, do as follows:

 Select a real-time data record on the left side of the **Project Manager** window, and right-click on the data you want to delete in the list pane on the right side. And you will see a right-click menu as shwon in Figure 8.5.



Figure 8.5

#### 2) Select Delete Data.

The selected data will be deleted from the data record.

# 8.2.4 Modifying Data

To modify a data defined in a real-time data record, do as follows:

 Select a real-time data record on the left side of the **Project Manager** window, and right-click on a data you want to modify in the list pane on the right side of the window.

And you will see a right-click menu as shown in Figure 8.6.





#### 2) Select Modify.

And you can modify the data according to your needs.

# 8.2.5Creating a Whole Database Record

A **Real-Time Whole Database Record** allows you to add all data defined in the real-time database into a data record, which saves the trouble of adding the data for drawing real-time trend curves one by one.

To create a whole database record, do as follows:

 Select the Real-Time Data Record node on the left side of the Project Manager window and right-click on it.

And you will see a right-click menu as shown in Figure 8.7.





2) Select **Create a Whole Database Record**, and you will see a dialog box as shown in Figure 8.8.

| Realtime Data Recor                                                                  | d        | × |
|--------------------------------------------------------------------------------------|----------|---|
| Realtime Data Record S<br>Record Name:<br>Default Record Period:<br>Period Variable: | Setting  |   |
| Control Variable:<br>Record Data Size:<br>Realtime Database:                         | 100      |   |
| 🖌 ок                                                                                 | X Cancel |   |

Figure 8.8

The parameters in Figure 8.8 are described as follows:

- **Record Name**: Name of a real-time data record.
- **Default Record Cycle**: Default time cycle for collecting data (unit: ms), which defines the time cycle for the system to collect data for all the data defined in a real-time data record.
- Cycle Variable: You can associate a time cycle for data collection to a real-time database variable. In this case, the time cycle can change dynamically during the system operation. If you set Cycle Variable, the value set for Default Record Cycle will become invalid.
- Control Variable: controls how a data record operates. It is valued as below:

0: means to start collecting data for all the data defined in the real-time data record.

1: means to stop collecting data for all the data defined in the real-time data record.

2: means to empty the data collected for all the data defined in the real-time data record.

- Data Collection Volume: defines how many times the data is to be collected for all the data defined in the data record. For example, if you set Default Record Cycle to 1000 and Data Collection Volume to 100, that means data will be collected for all the data defined in the data record every 1000 ms and 100 data will be collected the most. If more than 100 data are collected, the later collected data will overwrite the previously collected data. For example, if the 101<sup>st</sup> data is collected, the 1<sup>st</sup> collected data will be replaced.
- **Real-Time Database Name**: Name of the real-time database from where all the data will be selected and added to this whole database record.

# 8.2.6Deleting a Data Record

To delete a data record, do as follows:

1) Select a data record on the left side of the **Project Manager** window, and right-click on it.

And you will see a right-click menu as shwon in Figure 8.9.



Figure 8.9

2) Select Delete a Data Record.

And the selected data record will be deleted.

# 8.2.7 Modifying a Data Record

To modify a data record, do as follows:

1) Select a data record you want to modify on the left side of the **Project Manager** window, and right-click on it.

And you will see a right-click menu as shwon in Figure 8.10.



2) Select Modify.

And you can modify the data according to your needs.

### 8.3 Control - Real-Time Trend Curves

### 8.3.10verview

In the Interface Editor window, click on the Real-Time Trend button

in the

tool set on the left side, and move the cursor to the editting area on the right side, and you can see the cursor become a cross. Drag the mouse in the editting area to draw a rectangle, and real-time trend curves will be displayed in this rectangle, as shown in Figure 8.11.



Figure 8.11

In the middle of the **Real-Time Trend Curve** control is a drawing area with gridlines. The real-time trend curves will be displayed within this area. On the left side of the gridlines is the X-axis (for time), and at the bottom is the Y-axis (for value). You can select a real-time trend curve object (8 small rectangles will appear on the sides of the object once selected) to move the object or change the size of the object.

The gridlines are composed of two parts: the ones vertical to the X-axis and the ones vertical to the Y-axis. You can set the numbers of gridlines for each direction. For example, if you set the number of vertical gridlines to 5, then the whole curve area will be divided into 6 identical areas.

# 8.3.2 Properties of Real-Time Trend Curves

Select a real-time trend curve with a left click, and you will see the **Property List** pane displayed on the right side of the editting area, listing all the properties of the selected real-time trend curve.

Real-time trend curves have the following five property nodes, as shown in Figure 8.12:

- Basic Properties
- Events
- Real-Time Trend Basic Properties
- Real-Time Trend Curve Properties
- Real-Time Trend Indicator Line Properties



Figure 8.12

For details about basic properties, see section 5.3.3 Basic Properties. For details about events properties, see secton 5.3.5 Events.

#### 8.3.2.1 Basic Properties

A Real-Time Trend Curve control can display curves for multiple data. This section

| Property                   | Description                                          | Remarks on Dynamic Properties       |  |
|----------------------------|------------------------------------------------------|-------------------------------------|--|
| Minimum Value              | Value of the startpoint on the Y-axis.               | The return value is numeric.        |  |
| Maximum Value              | Value of the endpoint on the Y-axis.                 | Changing these two values will zoom |  |
|                            |                                                      | or move the curve vertically.       |  |
| Maximum Horizontal Points  | Maximum data points in the horizontal direction.     | No dynamic properties.              |  |
| Horizontal Points          | Data points distributed in the horizontal direction. | The return value is an integer.     |  |
|                            |                                                      | This property and the property      |  |
|                            |                                                      | Maximum Horizontal Points           |  |
|                            |                                                      | together zoom the curves            |  |
|                            |                                                      | horizontally.                       |  |
| Number of Vertical Lines   | Number of the gridlines vertical to the Y-axis.      | The return value is an integer.     |  |
| Number of Horizontal Lines | Number of the gridlines vertical to the X-axis.      | The return value is an integer.     |  |
| Horizontal Spacing         | Spacing between the curve drawing area and the left  | The return value is an integer.     |  |
|                            | or right margin of the curve control.                |                                     |  |
| Vertical Spacing           | Spacing between the curve drawing area and the top   | The return value is an integer.     |  |

describes the basic properties of all the curves.

| Property                  | Description                                                    | Remarks on Dynamic Properties         |
|---------------------------|----------------------------------------------------------------|---------------------------------------|
|                           | or bottom margin of the curve control.                         |                                       |
| Background Color          | Background color of the curve control.                         | The return value of the expression or |
| Background Color of       | Background color of the curve drawing area of the              | dynamic script is the RGB value of    |
| Curves                    | curve control.                                                 | the defined color.                    |
| Color of Vertical Lines   | Color of the gridlines vertical to the Y-axis.                 |                                       |
| Color of Horizontal Lines | Color of the gridlines vertical to the X-axis.                 |                                       |
| Color of Text             | Color of the text beside the X-axis and the Y-axis.            |                                       |
| Number of Curves          | Defines the number of curves to be displayed (16 the           | No dynamic properties.                |
|                           | most).                                                         |                                       |
| Data Source               | Source of the data for drawing the trend curve:                | No dynamic properties.                |
|                           | 1) Real-Time Record in Memory: The data                        |                                       |
|                           | selected for drawing the trend curve come from                 |                                       |
|                           | the current values of the data in the real-time data           |                                       |
|                           | record.                                                        |                                       |
|                           | 2) <b>File</b> : You can save real-time data records to files. |                                       |
|                           | If you set the data source to Files, then the saved            |                                       |
|                           | trend curves will be displayed.                                |                                       |
| Trend Name                | Valid when Data Source is set to Real-Time Records             | No dynamic properties.                |
|                           | in Memory.                                                     |                                       |
|                           | The trend name indicates the name of the real-time             |                                       |
|                           | data record. It must be defined in the real-time data          |                                       |
|                           | record in <b>Project Manager</b> .                             |                                       |
| File Storage Location     | Valid when Data Source is set to File.                         | The return value is 0 or 1:           |
|                           | This property indicates the location whereh the record         | • 0: Internal flash                   |
|                           | file is stored, either the internal flash or the CF card.      | • 1: CF card                          |
| File Name                 | Valid when Data Source is set to File.                         | The return value is a string which    |
|                           | This property indicates the name of the record file.           | contains the name of the record file. |
| Start Point               | Valid when Data Source is set to File.                         | The return value is int.              |
|                           | This property indicates from which data point of the           | Changing the value of this property   |
|                           | record the curve starts to display.                            | will move the curve horizontally.     |

#### 8.3.2.2 Properties of Curves

This section describes the data to which each curve is associated and the color of the curve. In total, 16 curves can be configured the most.

| Property      | Description                                            | Remarks on Dynamic Properties                    |
|---------------|--------------------------------------------------------|--------------------------------------------------|
| Variable Name | Defines the name of the variable to which the curve is | The return value is a string, which is the name  |
|               | associated.                                            | of the variable data to which the curve is       |
|               | This variable must be defined in the real-time data    | associated.                                      |
|               | record.                                                | If a blank string ("") is returned, it means the |
|               | If no variable is defined here, then the corresponding | curve will not be displayed.                     |

|             | curve will not be displayed.    |                                                |
|-------------|---------------------------------|------------------------------------------------|
| Curve Color | Defines the color of the curve. | The return value of the expression or the      |
|             |                                 | dynamic script is the RGB value of the defined |
|             |                                 | color.                                         |

#### 8.3.2.3 Properties of Indicator Lines

| Property        | Description                                           | Remarks on Dynamic Properties              |  |
|-----------------|-------------------------------------------------------|--------------------------------------------|--|
| Allow Indicator | Defines whether the control provides indicator lines. | The return value is bit, as follows:       |  |
| Line            |                                                       | • 0: Not allow                             |  |
|                 |                                                       | None 0: Allow                              |  |
| Indicator Line  | Defines the color of the indicator line.              | The return value of the expression or the  |  |
| Color           |                                                       | dynamic script is the RGB value of the     |  |
|                 |                                                       | defined color.                             |  |
| Time Variable   | The time data where the indicator line points to is   | The return value is a string, which is the |  |
|                 | saved to this variable.                               | name of the time variable.                 |  |
| Data Value      | The data value of the curve where the indicator line  | The return value is a string, which is the |  |
| Variable        | points to is saved to this variable.                  | name of the data value variable.           |  |

# 8.4 Saving Real-Time Data Records

EASY allows you to save the data defined in real-time data records and to view the curves using the **Real-Time Trend Curve** control. You can call the function **rtdb\_log\_save\_file** to save real-time data records. For details, please see section 8.5 System Functions for Real-Time Trend Curves.

You can also view the curves for the saved data using the **Real-Time Trend Curve** control. (You must set **Data Source** to **File**. For details, see section 8.3.2.1 Basic Properties.) Alternatively, you can call the function **rtdb\_get\_log\_data\_from\_file**. For details about this function, see section 8.5 System Functions for Real-Time Trend Curves.

# 8.5 System Functions for Real-Time Trend Curves

#### 8.5.1 rtdb\_log\_save\_file

# Original Function: int rtdb\_log\_save\_file(char \*logname, int save\_dir, char \*filename)

Function Description: To save a real-time data record into a file.

Return Value: 0 Failed

1 Successful

Parameters: logname: Name of a real-time data record.

save\_dir: 0: HMI internal flash; 1: CF card.

*filename*: Name of the file for saving the real-time data record.

Example: rtdb\_log\_save\_file("real", 0, "recfile.log")

8.5.2 rtdb\_get\_log\_data

Original Function: int rtdb\_get\_log\_data(char \*logname, char \*dataname, u8 \*buf, int log\_number)

Function Description: To obtain data from the current real-time data record.

Return Value: 0: Failed

Other values: Actual volume of data collected.

**Parameters**: *logname*: Name of a real-time data record.

dataname: Name of the data variable for which data is to be collected.

*buf*: Buffer for the collected data. You need to assign space for the butter in advance.

. . . . .

*log\_number*: Volume of data to be collected.

**Example**: rtdb\_get\_log\_data("real", "test.data1", buf, 100)

#### 8.5.3 rtdb\_get\_log\_data\_from\_file

Original Function: int rtdb\_get\_log\_data\_from\_file(int *file\_path*, char

\*filename, char \*dataname, u8 \*buf, int log\_number, int start\_pt)

Function Description: To obtain data from the saved real-time record file.

Return Value: 0: Failed

Other values: Actual volume of data collected.

**Parameters**: *file\_path*: 0: HMI internal flash; 1: CF card.

*filename*: Name of the file where the real-time data record is saved.

dataname: Name of the data variable for which data is to be collected.

*buf*: Buffer for the collected data. You need to assign space for the butter in advance.

*log\_number*. Volume of data to be collected.

*start\_pt*: Start point from where data is collected.

**Example**: rtdb\_get\_log\_data\_from\_file(0, " recfile.log ", "test.data1", buf, 100, 0)

# **Chapter 9 Historical Data Processing**

### 9.1 Overview

The data saving function is of vital importantance to any industrial system. As the industrial automation becomes more and more popular and advanced, the demands and requirements for saving and accessing important data of industrial sites become more and more complicated as well. The traditional HMIs disclose more and more disadvantages, for example:

- Inability of saving large quantities of data
- Slow saving speed
- High risks of data loss
- Short saving period
- Huge space occupation for the saved data
- Slow access speed

Therefore, for large-scale systems with high requirements, the issue of saving and accessing historical data becomes more and more crucial.

Considering this development tendency, EASY HMI comes out with the idea of high-speed historical database, which supports as high-speed as millisecond saving and inquiring of historical data. EASY adopts the most advanced data compression and search technologies, which achieves the compression ratio of the database lower than 20%, greatly saving the disk space. In addition, the data inquiry speed is considerably increased, allowing you to query the data at any time. Besides, you can download the data at any time to an external device, such as a thumb drive or external hard drive, which solves the issue of data loss.

In the EASY system, all the data variables that can be defined in the real-time database, such as the discrete, int, real type, and string variables, support historical data saving. EASY supports the following three modes of historical data saving:

- Timed Saving (minimum unit: 1ms)
- Saving at Data Change
- Variable-Triggered Saving

### 9.2 Historical Data Records

### 9.2.10verview

Before saving the collected data into the database, you need to create historical data records first. You can define one or more historical data records, and each can contain one or more data to be saved.

While adding the data to be saved into a historical data record, besides defining the name of the data, you also need to define the data saving mode: timed saving, data change saving, or variable-triggered saving. When the defined saving condition of the defined saving mode is satisfied, the system will save the data automatically.

All the data in a historical data record share some common properties; for example, they will be collected at the same time cycle. You can also define a data into different historical data records. In this case, this data will have various different properties. For example, you want to collect a data 100 times at the interval of 1s for one real-time trend curve; while for the same data, you want to collect it 200 times at the interval of 5s for another. In this case, you can define this data into two individual data records.

During the interface configuration, each **Historical Trend Curve** or **Historical Data List** control associates one historical data record only. However, this **Historical Trend Curve** or **Historical Data List** control can display all the data defined in the historical data record to which the control associates.

### 9.2.2Creating a Historical Data Record

To create a historical data record, do as follows:

- Select the Historical Data Record node on the left side of the Project Manager window.
- Right-click on it and select Add a Historical Data Record. And you will see the dialog box as shown in Figure 9.1.

| H          | istory Data Conf              | iguration   | × |  |
|------------|-------------------------------|-------------|---|--|
|            | -History Record Data          | Setting     |   |  |
|            | History Record<br>Name:       |             |   |  |
|            | Lowest Period(ms):            | 1000        |   |  |
|            | File Location:                | Inner flash |   |  |
|            | Saving Date:                  | 1           |   |  |
|            | Interval of Index<br>Time(s): | 600         |   |  |
| V X Cancel |                               |             |   |  |



The parameters in Figure 9.1 are described as follows:

- Historical Record Name: Name of a historical data record.
- **Minimum Time Cycle**: Minimum time cycle for processing and saving the data defined in a historical data record.

The system checks periodically (depending on the minimum time cycle defined here) whether the conditions set for saving the individual data defined in a historical data record are satisfied. If satisfied, the system will save the data into the historical database.

In other words, this parameter actually defines the finest level of granularity for processing a historical data record. For example, suppose you set this parameter to **1s** and set the mode for saving a data in a historical data record to **Variable-Triggered**. If the related variable jumps multiple times within 1s, then the system records only the value of the last jump, while the previous jumps will not be captured.

- **File Saving Location**: defines where to save the file of a historical data record. You can choose to save the file into the internal flash or the C Fcard.
- **Data Saving Days**: defines the maximum days of saving the historical data in the historical database.

When the defined number of days expires, the system will automatically delete the historical data collected.

 Index interval: defines the interval for creating index for the saved historical data. Creating index will speed up the search of the historical data. However, it will increase the space occupied.

# 9.2.3Adding Data

After you create a historical data record, you need to add data into this record.

To add data into a record, do as follows:

1) Select a historical data record on the left side of the Project Manager window,

and then right-click in the list pane on the right side of the window, as shown in Figure 9.2.



Figure 9.2

2) Select Add Data, and you will see a dialog box as shown in Figure 9.3.

| History Data Record          | i              | × |
|------------------------------|----------------|---|
| -History Data Setting-       |                |   |
| Database Name:               |                |   |
| Realtime Data<br>Name:       |                | 2 |
| Query Variable:              |                | 2 |
| Record Type:                 | cycle record 💌 |   |
| Timing Record<br>Period(ms): |                |   |
| Data Variable:               |                |   |
| Spring Variable:             | ,              |   |
| Description:                 |                |   |
| 🖌 ок                         | X Cancel       |   |

Figure 9.3

The parameters in Figure 9.3 are described as follows:

- **Database Name**: Name of the database from where you select the data for adding into the record.
- **Real-Time Data Name**: Name of the variable corresponding to the data to be saved.
- Inquiry Variable Name: While you query a saved historical data, the queried data value will be saved to this variable. For details, see section 9.5 Historical Data Inquiry. If no inquiry variable is defined, it means there is no need to query this data.
- **Saving Mode**: defines the condition for saving a specific data. The system supports the following three saving modes:
  - Timed Saving: The system saves the data value into the historical database at a specified interval, no matter whether the data value changes.
  - Saving at Data Change: The values of variables keep changing during the system operation. The system saves the changed value of a variable only when the difference between the current value and the previous value is greater than the defined data change value.

For example, you want to save the value of a real type variable, and you set

the data change value to 1. Suppose that the first value of this real type variable is saved as 10 in the system.

When the value of this variable changes to 10.9, this value will not be saved because 10.9-10=0.9<1 (namely, the difference between the current value and the previous value is less than the defined data change value). When the value changes to 12, the changed value 12 will be saved to the historical record because 12-10.9=1.1>1 (namely, the difference is greater than the defined data change value).

- Variable-Triggered Saving: When the value of the defined trigger variable becomes 1, the system starts saving the data. After the data is saved, the system automatically resets the value of the trigger variable to 0.
- **Timed Saving Interval**: When you set **Saving Mode** to **Timed Saving**, this parameter defines the interval for saving the selected data.
- **Data Change Value**: When you set **Saving Mode** to **Saving at Data Change**, this parameter defines the value of the data change.
- **Trigger Variable**: When you set **Saving Mode** to **Variable-Triggered Saving**, this parameter specifies the trigger variable.
- **Description**: This parameter can have following two types of values:
  - Descriptive text for the data;
  - > Name of the relative field to be displayed in the **Historical Data List** control.

# 9.2.4Deleting Data

To delete a data defined in a historical data record, do as follows:

 Select the name of the historical data record on the left side of the Project Manager window, and right-click on the data you want to delete in the list pane on the right side.

And you will see a right-click menu as shown in Figure 9.4.

| New Data( <u>N</u> )    |
|-------------------------|
| Delete Data( <u>D</u> ) |
| Modify( <u>P</u> )      |
| Figure 9.4              |

2) Select Delete Data.

And the selected data will be deleted.

# 9.2.5 Modifying Data

To modify a data defined in a historical data record, do as follows:

 Select the name of the historical data record on the left side of the Project Manager window, and right-click on the data you want to modify in the list pane on the right side.

And you will see a right-click menu as shown in Figure 9.5.



Figure 9.5

#### 2) Select Modify.

And you can modify the data according to your needs.

# 9.2.6Deleting a Historical Data Record

To delete a historical data record, do as follows:

 Select the name of the historical data record on the left side of the Project Manager window, and right-click on it.

And you will see a right-click menu as shown in Figure 9.6.



Figure 9.6

2) Select **Delete a Historical Data Record**.

And the selected historical data record will be deleted.

# 9.2.7 Modifying a Historical Data Record

To modify a historical data record, do as follows:

 Select the name of the historical data record on the left side of the Project Manager window, and right-click on it.

And you will see a right-click menu as shown in Figure 9.7.



Figure 9.7

2) Select Modify.

And you can modify the historical data record according to your needs.

### 9.3 Control - Historical Trend Curves

### 9.3.10verview

In the **Interface Editor** window, click on the **Historical Trend** button **I** in the tool set on the left side and move the cursor to the editting area on the right side, you will see the cursor becomes a cross. Drag the cursor to draw a rectangle, and the historical trend curves will be displayed in this rectangle, as shown in Figure 9.8.





In the middle of the **Historical Trend Curve** control is a drawing area with gridlines. The historical curves will be displayed within this area. On the left side of the gridlines is the X-axis (for time), and at the bottom is the Y-axis (for value). You can select a historical trend curve object (8 small rectangles will appear on the sides of the object once selected) to move the object or change the size of the object.

The gridlines are composed of two parts: the ones vertical to the X-axis and the ones vertical to the Y-axis. You can set the numbers of gridlines for each direction. For example, if you set the number of vertical gridlines to 5, then the whole curve area will be divided into 6 identical areas.

### 9.3.2 Properties of Historical Trend Curves

After historical trend curves are drawn, select any of the curves with a left click, and you will see the **Property List** pane displayed on the right side of the editing area, listing all the properties of the selected historical curve.

Historical curves have the following five property nodes, as shown in Figure 9.9:

- Basic Properties
- Events

- Historical Trend Basic Properties
- Historical Trend Curve Properties
- Historical Trend Indicator Line Properties





For details about basic properties, see section 5.3.3 Basic Properties. For details about events properties, see secton 5.3.5 Events.

#### 9.3.2.1 Basic Properties

A **Historical Trend Curve** control can display curves for multiple data. This section describes the basic properties of all the curves.

| Property                   | Description                                          | Remarks on Dynamic          |
|----------------------------|------------------------------------------------------|-----------------------------|
|                            |                                                      | Properties                  |
| Minimum Value              | Value of the startpoint on the Y-axis.               | The return value is         |
| Maximum Value              | Value of the endpoint on the Y-axis.                 | numeric.                    |
|                            |                                                      | Changing these two values   |
|                            |                                                      | will zoom or move the curve |
|                            |                                                      | vertically.                 |
| Horizontal Points          | Data points distributed in the horizontal direction. | No dynamic properties.      |
| Number of Vertical Lines   | Number of the gridlines vertical to the Y-axis.      | The return value is an      |
|                            |                                                      | integer.                    |
| Number of Horizontal Lines | Number of the gridlines vertical to the X-axis.      | The return value is an      |
|                            |                                                      | integer.                    |

| Horizontal Spacing          | Spacing between the curve drawing area and the left or     | The return value is an        |
|-----------------------------|------------------------------------------------------------|-------------------------------|
|                             | right margin of the curve control.                         | integer.                      |
| Vertical Spacing            | Spacing between the curve drawing area and the top or      | The return value is an        |
|                             | bottom margin of the curve control.                        | integer.                      |
| Background Color            | Background color of the curve control.                     | The return value of the       |
| Background Color of Curves  | Background color of the curve drawing area of the curve    | expression or dynamic         |
|                             | control.                                                   | script is the RGB value of    |
| Color of Vertical Lines     | Color of the gridlines vertical to the Y-axis.             | the defined color.            |
| Color of Horizontal Lines   | Color of the gridlines vertical to the X-axis.             |                               |
| Color of Text               | Color of the text beside the X-axis and the Y-axis.        |                               |
| Start Time: (year, month,   | Defines the range of data displayed by the historical      | The return value is an        |
| date, hour, minute, second) | trend curves.                                              | integer.                      |
| End Time: (year, month,     |                                                            | The return value is an        |
| date, hour, minute, second) |                                                            | integer.                      |
| Historical Record Name      | Indicates the name of the historical data record for       | No dynamic properties.        |
|                             | which the curves are drawn.                                |                               |
|                             | These curves are displayed for all the data defined in     |                               |
|                             | the historical data record.                                |                               |
|                             | This name is defined when you create the historical data   |                               |
|                             | record in the Project Manager window.                      |                               |
| Redrawing Variable          | Name of the redrawing variable of the Historical Trend     | The return value is a string, |
|                             | Curve control.                                             | which is the name of the      |
|                             | The value of this variable is bit. When the value of this  | redrawing variable.           |
|                             | variable is 1, the system starts redrawing all the curves  |                               |
|                             | covered in the control. After the redrawing is complete,   |                               |
|                             | the system automatically resets the value of this variable |                               |
|                             | to 0.                                                      |                               |
| Number of Curves            | Defines the number of curves to be displayed (16 the       | No dynamic properties.        |
|                             | most).                                                     |                               |

#### 9.3.2.2 Properties of Curves

This section describes the data to which each curve is associated and the color of the curve. In total, 16 curves can be configured the most.

| Property      | Description                                                  | Remarks on Dynamic Properties          |
|---------------|--------------------------------------------------------------|----------------------------------------|
| Variable Name | Defines the name of the variable to which the curve is       | The return value is a string, which is |
|               | associated.                                                  | the name of the variable data to which |
|               | This variable must be defined in the historical data record. | the curve is associated.               |
|               | If no variable is defined here, then the corresponding       | If a blank string ("") is returned, it |
|               | curve will not be displayed.                                 | means the curve will not be displayed. |
| Curve Color   | Defines the color of the curve.                              | The return value of the expression or  |
|               |                                                              | the dynamic script is the RGB value of |

| Property | Description | Remarks on Dynamic Properties |
|----------|-------------|-------------------------------|
|          |             | the defined color.            |

#### 9.3.2.3 Properties of Indicator Lines

| Property        | Description                                          | Remarks on Dynamic Properties              |
|-----------------|------------------------------------------------------|--------------------------------------------|
| Allow Indicator | Defines whether the control provides indicator line. | The return value is bit, as follows:       |
| Line            |                                                      | • 0: Not allow                             |
|                 |                                                      | None 0: Allow                              |
| Indicator Line  | Defines the color of the indicator line.             | The return value of the expression or the  |
| Color           |                                                      | dynamic script is the RGB value of the     |
|                 |                                                      | defined color.                             |
| Time Variable   | The time data where the indicator line points to is  | The return value is a string, which is the |
|                 | saved to this variable.                              | name of the time variable.                 |
| Data Value      | The data value of the curve where the indicator line | The return value is a string, which is the |
| Variable        | points to is saved to this variable.                 | name of the data value variable.           |

# 9.4 Control - Historical Data List

The Historical Data List control displays all the saved historical data in a list.

In the **Interface Editor** window, click on the **Historical Data List** button  $\square$  in the tool set on the left side. Move the cursor to the editting area, and you can see the cursor become a cross. Drag the mouse to draw a rectangle, and the historical data list control will be displayed in this rectangle, as shown in Figure 9.10.



#### Figure 9.10

After you draw the historical data list control, select it with a left click, and you will see the **Property List** of the control on the right side of the editting area. The properties of the historical data list control are described as follows:

| Property                  | Description                                                                   | Remarks on Dynamic     |
|---------------------------|-------------------------------------------------------------------------------|------------------------|
|                           |                                                                               | Properties             |
| Number of List Rows       | Defines the maximum number of rows to be displayed in the                     | No dynamic properties. |
|                           | historical data list.                                                         |                        |
|                           | The extra rows of historical data will not be displayed.                      |                        |
| Height Between List Items | Defines the height between the list items.                                    | No dynamic properties. |
| Display Field             | Defines the field to be displayed in the data list. It can be defined by      | No dynamic properties. |
|                           | the designer to satisfy special needs. The default display field is the       |                        |
|                           | time the data is collected.                                                   |                        |
|                           | Note: Click in the blank area on the right side of the display field, and     |                        |
|                           | a list of historical data variables will be displayed. All the data in the    |                        |
|                           | historical variable list must be defined in the historical data record        |                        |
|                           | created in the Project Manager window. In other words, all the data           |                        |
|                           | defined in the historical data record will be displayed in the list. You      |                        |
|                           | can check the variables which you want to display in the historical           |                        |
|                           | data list, and you can use the <b>Move Up</b> and <b>Move Down</b> buttons to |                        |
|                           | adjust the locations of the selected variables.                               |                        |
|                           |                                                                               |                        |
| Redrawing Variable        | Name of the redrawing variable of the Historical Data List control.           | No dynamic properties. |
|                           | The value of this variable is bit. When the value of this variable is 1,      |                        |
|                           | the system re-accesses the historical data and redraws the historical         |                        |
|                           | data list control. After the redrawing is complete, the system                |                        |
|                           | automatically resets the value of this variable to 0.                         |                        |
| Historical Record Name    | Indicates the name of the historical data record for which the                | No dynamic properties. |
|                           | historical data list is drawn.                                                |                        |
|                           | The historical data list displays all the data defined in the historical      |                        |
|                           | data record.                                                                  |                        |
|                           | This name is defined when you create the historical data record in            |                        |
|                           | the Project Manager window.                                                   |                        |
| Start Time: (year, month, | Defines the range of data to be displayed by the historical data list         | The return value is an |
| date, hour, minute,       | control, as follows:                                                          | integer.               |
| second)                   | • The start time is all 0 while the end time is not all 0: to display all     |                        |
| End Time: (year, month,   | the data records ending at the end time.                                      |                        |
| date, hour, minute,       | • The start time is not all 0 while the end time is all 0: to display all     |                        |
| second)                   | the data records starting from the start time.                                |                        |
|                           | • The start time is all 0 and the end time is all 0: to display all the       |                        |
|                           | data defined in the historical data record.                                   |                        |
|                           | • The start time is not all 0 and the end time is not all 0: to display       |                        |
|                           | the data records starting from the start time and ending at the               |                        |
|                           | end time.                                                                     |                        |

### 9.5 Historical Data Inquiry

Besides dislaying the historical data with the **Historical Trend Curve** control and the **Historical Data List** control, EASY also allows you to query the historical data using system functions. The system functions allow you to query any saved historical data easily.

EASY provides the following two ways for inquiring the historical data:

- Specifing inquiry fields
- Obtaining values of the fields of the selected record in the Historical Data List control

No matter which way of the above you choose, you will need to define a inquiry variable for the historical data to be queried. The queried results will be saved to the defined inquiry variable. For details about defining the inquiry variable, please see section 9.2.3 Adding Data.

# 9.5.1 Inquiring Historical Data by Specified Fields

As stated before, the system saves a data defined in a historical data record automatically when the defined saving condition is satisfied. Actually, it can be understood that a record is added in the historical database every time when the system saves a data automatically. This record is composed of fields which are all the data defined in a historical data record. In other words, each field is associated to a historical data and its inquiry variable, where the historical data is the data value to be displayed for the field and the individual inquiry variable is for saving the value of the corresponding field when the data matching the defined condition is searched during the historical data inquiry.

The function of inquiring historical data by specified fields is implemented by the system functions **history\_query\_all** and **history\_query\_data**. Both system functions require a parameter **query\_var\_name**, which stands for the name of the historical data to which the field to be queried is associated. Before calling these two functions, you need to assign an initial value to the inquiry variable to which the field is associated, so as to define the inquiry condition. The function called will then search the historical database based on the defined inquiry condition in the following sequence:

- Obtain the field to which the historical data defined in the parameter query\_var\_name is associated;
- Search every record in the database to determine whether the historical value of the field is equal to the value of the corresponding inquiry variable.

If equal, then the record is consiered matching the inquiry condition, and thus the

historical value of each field of the record will be assigned to the individually corresponding inquiry variable.

The difference between the functions **history\_query\_all** and **history\_query\_data** is that: **history\_query\_all** searches all the historical data records in the historical database, while **history\_query\_data** searches only the specified historical data record.

For details about these two functions, please see section 9.8 System functions for Processing Historical Data. The following of this section will take two examples to further explain how to use these two functions.

Suppose that you have created a historical data record with the name as **run\_his**, and that you have added the following data, as shown in th table below, into the record (The data saving conditions are not listed in the table below since they are not involved in the discussion here; you can define these conditions according to your needs.):

| Name of Historical Data | Name of Inquiry Variable | Description |
|-------------------------|--------------------------|-------------|
| test.V                  | test.V_query             | Voltage     |
| test.l                  | test.I_query             | Input       |
| test.P                  | test.P_query             | Power       |

During the interface configuration, suppose that you have added a **Historical Data List** control and associated it to the historical data record **run\_his** (by setting **Historical Record Name** in the control to **run\_his**). Suppose that the following historical data are generated after a while of system operation:

| Record Number | Voltage | Input | Power |
|---------------|---------|-------|-------|
| 1             | 10.45   | 5.6   | 100.5 |
| 2             | 20.12   | 10.34 | 200.3 |
| 3             | 25      | 12    | 230.3 |
| 4             | 14.23   | 8.7   | 230   |

To query the historical data record with the input value as **10.34**, you need to do the following:

- Set the value of the inquiry variable test.I\_query to which the Input field is associated to 10.34;
- 2) Call the function history\_query\_data as follows:

#### history\_query\_data("test.l", "run\_his").

In which, the first parameter query\_var\_name specifies the field test.I, namely, the historical data corresponding to the Input field, the second parameter run\_his is the name of the historical data record.

After you call this function, the system will search through all the historical data in the

historical data record run\_his until the first record with the Input value as 10.34 (the second record in this example) is found.

Once found, the system automatically saves the value of individual field to the corresponding inquiry variable.

Therefore, in this example, it will be like this after you call the function history\_query\_data:

test.V\_query=20.12, test.I\_query=10.34, test.P\_query=200.3.

# 9.5.2Obtaining Value for Fields of a Selected Historical Record

After you select a historical data record in the **Historical Data List** control, you can call the function **hislist\_query\_data** to save the value of the individual field to the corresponding inquiry variable.

For details about this function, see section 9.8 System Variables for Processing Historical Data.

### 9.6 Downloading Historical Data

Based on your configuration settings, the historical data will be saved into the HMI internal flash or the CF card.

The system generates a file for each historical data record per day. These files are named in the following format: LCHistest200608200700.dat(LCHis+Name of the historical data record+year+month+date+Serial NO.dat. You can download these files to a thumb drive or a PC for futher inquiry.

At present, EASY supports the following two downloading methods:

- Downloading to the thumb drive through the system function
- Downloading to the PC through FTP

# 9.6.1Downloading Historical Data to a Thumb Drive Using System Function

You can call the system function **sys\_history\_download()** to export all the historical data files saved in the HMI internal flash or the CF card to a thumb drive.

For details about this function, please see section 9.8 System Functions for Processing Historical Data.

# 9.6.2Downloading Historical Data to a PC Through FTP

You can selectively download the historical data files saved in the HMI internal flash or the CF card to a PC through FTP.

To do this, you need to log in to the HMI through the FTP client tool. Both the login username and the password are **EASY**.

Once logging in successfully, you will see the following directories:

• data: contains the user data saved in the HMI internal flash.

The user data refers to the data you have saved previously according to your needs.

- hisdata: contains the historical data saved in the HMI internal flash.
- **cfcard**: contains the user data and the historical data saved in the CF card. You can select from the above directories what data to download to your PC.

### 9.7 Data Format Conversion

You cannot immediately view the historical data files downloaded to the thumb drive or the PC, because they are in the internal binary format (marked with the extension name .dat).

To solve this issue, EASY provides the **Historical Data Conversion** tool to convert these **.dat** files to **.csv** files, which can be recognized by EXCEL. As shown in Figure 9.11, the installed EASY package contains the **Historical Data Conversion** tool.





Click on **Historical Data Conversion**, and you can see a dialog box as shown in Figure 9.12.

| 当前文件夹:        |           |         |
|---------------|-----------|---------|
| CSV文件名(不含后缀): | Ichisdata | - HA    |
| 选择文件 (单一转换)   |           |         |
| 当前文件:         |           | <u></u> |
|               | 转换        |         |



The Historical Data Conversion tool works in two ways, whold folder conversion and single file conversion, as described below:

#### Whold Folder Conversion

For a folder which contains multiple historical data files, you can use this tool to combine all the historical data in all these files into one CSV file, and then open it with EXCEL.

To convert all the files in a folder, do as follows:

- In Figure 9.12, click on the button in the Select a Folder area, and select the folder you want to convert.
- Set the name for the CSV file after conversion.
  The default file name is **Ichisdata**.
- 3) Click on the **Convert** button.

All the historical data files in the selected folder will be converted into one CSV file. This CSV file will be saved in the same directory as the selected folder.

#### • Single File Conversion

For a single historical file, you can also convert it into a CSV file and open it with EXCEL.

To convert a single file, do as follows:

In Figure 9.12, click on the button in the Select a File area, and select the file you want to convert.

#### 2) Click on the **Convert** button.

The selected historical data file will be converted into a CSV file. This CSV file will be saved in the same path as the selected file.

### 9.8 System Functions for Processing Historical Data

#### 9.8.1 sys\_history\_download

#### Original Function: int sys\_history\_download()

**Function Description**: To download historical data historical data from the HMI internal flash or the CF card to a thumb drive.

Return Value: 0 Failed

1 Successful

Parameter: None.

Example: sys\_history\_download()

#### 9.8.2 history\_query\_all

**Original Function**: int **history\_query\_all(char** \*query\_var\_name)

**Function Description**: To query historical data records from all historical databases by the specified fields. For details, see section 9.5.1 Inquiring Historical Data by Specified Fields.

Return Value: 0: Failed

1: Successful

**Parameter**: *query\_var\_name*: Name of the historical data with which the field to be searched is associated.

**Example**: history\_query\_all("test.query\_data1")

#### 9.8.3 history\_query\_data

### Original Function: int history\_query\_data(char \*query\_var\_name, char

#### \*history\_name)

Function Description: To query historical data records from the defined

historical database by the specified fields. For details, see section

9.5.1 Inquiring Historical Data by Specified Fields.

#### Return Value: 0: Failed

1: Successful

**Parameters**: *query\_var\_name*: Name of the historical data with which the field to be searched is associated.

*history\_name*: Name of the historical data record. **Example**: history\_query\_data("test.query\_data1", "his")

9.8.4 hislist\_query\_data

Original Function: int hislist\_query\_data(char \*window\_name, char

\*widget\_name)

**Function Description**: To query the values of the various fields of the record currently selected in the **Historical List** control.

Return Value: 0: Failed

1: Successful

**Parameters**: *window\_name*: Name of the window where the **Historical List** control is located.

*widget\_name*: Name of the graphic component of the **Historical List** control.

Example: history\_query\_data("main\_pic", "hislist1")

9.8.5 hislist\_delete\_data

Original Function: int hislist\_delete\_data(char \*window\_name, char \*widget\_name)

Function Description: To delete the currently selected record from the Historical List control.

Return Value: 0: Failed

1: Successful

**Parameters**: *window\_name*: Name of the window where the **Historical List** control is located.

widget\_name: Name of the graphic component of the Historical List

control.

Example: history\_delete\_data("main\_pic", "hislist1")

# Chapter 10 Alarms

To ensure safe production and operation on industrial sites, the alarm and event generating and recording are crucially important.

EASY provides a powerful alarm and event system, which is described in details below.

### 10.1 Overview

Alarms are generated by the system automatically when the values of the specified settings exceed the pre-defined values. They can be taken as warnings agains serious accidents.

Take the oil tank in the refinery for example. If no limit is pre-defined for the oil level during the oil loading, then no alarms will be generated by the system to warn the operators. In this case, overloading might happen, which might cause very serious consequencies. In contrarary, if the oil level limit is pre-defined to trigger system alarms when necessary, measures can be taken accordingly to prevent the accident.

System alarms are processed as follows: When alarms or events occur, the system saves the alarm or event related information in the memory cache (the size of which can be defined). EASY processes alarms and events according to the first-in-first-out principle. That is to say, only the most recent alarm and event information is saved in the memory.

You can view the alarm and event information in the alarm window provided in the HMI.

### 10.2 Configuring Size of Alarm Cache

The alarm cache is part of the system memory especially for saving alarm information. The size of the alarm cache is configurable.

To configure the size of the alarm cache, do as follows:

- 1) Select **Alarm Configuration** on the left side of the **Project Manager** window, and right-click on it.
- Select Alarm Configuration from the right-click menu. You will see a dialog box as shown in Figure 10.1.

| Setting Alarm Group        | ×        |
|----------------------------|----------|
| Setting<br>Alarm Group: 10 |          |
| 🖌 ок                       | X Cancel |

Figure 10.1

The size of the alarm cache is calculated by the number of alarm information records that can be saved in the cache. When the alarm records take more than the defined space, the previous alarm information will be replaced by the new record.

# 10.3 Alarm Groups

# 10.3.1 Overview

To have the alarm information displayed, you must define the data for which alarms are to be displayed, alarm conditions, and alarm contents. EASY allows you to add alarm groups and then add alarm data into alarm groups.

You can define one or more alarm groups, and you can add one or more data for which alarms are to be displayed into each alarm group. When adding alarm data into an alarm group, you need to specify the data name and define the alarm condition and alarm contents as well. When the defined alarm condition is satisfied, the alarm information will be automatically saved into the alarm cache.

During the interface configuration, you can use the **Alarm Window** control to display the alarm information. Each control can be associated with one alarm group only. The **Alarm Window** control associated with the alarm group can display all the alarm data defined in the alarm group.

# 10.3.2 Adding an Alarm Group

To add an alarm group, do as follows:

- 1) Select **Alarm Configuration** on the left side of the **Project Manager** window, and right-click on it.
- Select Add an Alarm Group on the right-click menu.
  And you will see the following dialog box as shown in Figure 10.2.

| Setting Alarm Group     | ×      |
|-------------------------|--------|
| Setting<br>Alarm Group: |        |
| 🖌 ок                    | Cancel |

Figure 10.2

3) Enter the name of the alarm group, and click on **OK**.

# 10.3.3 Adding Alarm Data

After you add an alarm group, you need to add alarm data into it.

To add the alarm data, do as follows:

 Select an alarm group on the left side of the **Project Manager** window, and right-click in the list pane on the right side of the window.

You will see a right-click menu as shown in Figure 10.3.



Figure 10.3

2) Select Add Data, and you will see the dialog box as shown in Figure 10.4.

| Alarm Data Information          |                      |             |  |
|---------------------------------|----------------------|-------------|--|
| Basic Information               |                      |             |  |
| Database:                       | Realtime Data:       |             |  |
| Priority                        | Status Variable:     |             |  |
| , many.                         |                      | -           |  |
|                                 |                      |             |  |
| Analoge Alarm Settin<br>Variabl | g<br>e Limited Value | Alarm Text  |  |
| Hight:                          |                      |             |  |
| High High:                      |                      |             |  |
| Low:                            |                      |             |  |
|                                 |                      |             |  |
|                                 |                      |             |  |
| Digital Property Settir         | ıg                   | Alarra Taut |  |
| Variable                        |                      |             |  |
| On:                             |                      |             |  |
| Off:                            |                      |             |  |
|                                 | 1                    | 1           |  |
|                                 | V OK X Cance         | 8           |  |
|                                 | Figure 10.4          |             |  |

The Alarm Data Information dialog box is composed of three parts:

- Basic Information
- Analog Alarm Configuration
- Digital Alarm Configuration

See the following sections for detailes.

#### **10.3.3.1 Basic Information Configuration**

This section defines the basic alarm information, which are valid for both analog and digital alarms.

The configuration parameters for basic alarm information are described as follows:

- **Database Name**: Name of the database from where the alarm data are added from.
- Real-Time Data Name: Name of the alarm data.
- **Priority**: Priority of the alarm.
- **Status Variable**: An int variable, which defines the current state of the alarm data. The value of this variable can be one of the following:
  - > 0 ----- Normal
    > 1 ----- Confirmed
  - > 2 ----- Restored
  - > 3 ----- Alarming

The above four states of Status Variable are described as follows:

- **Normal**: The value of **Status Variable** is within the defined value range, and no alarms have ever been generated.
- **Confirmed**: The alarm is confirmed. This state indicates that the generated alarm is already confirmed and processed. However, this alarm state still stays in the system.
- **Restored**: The value of the variable is restored to the defined value range, and no alarms will be generated.
- Alarming: The value of the variable matches the alarm condition and an alarm is being generated.

If no status variable is defined, it means that you do not need to obtain the alarm status for the alarm data.

#### 10.3.3.2 Analog Alarm Configuration

The configuration in this section is valid only when the alarm data is analog. The analog alarm data refers to variables of all types in the real-time database except the digital data, including int, real type, and float variables.

Analog alarms are mostly over-limit alarms. Please see below for details.

Over-limit alarms are those generated by the system when the value of the analog alarm data goes beyond the high or low alarm threshold. Over-limit alarms have altogether four alarm thresholds: low low (LL), low (L), high (H), and high high (HH), as shown in Figure 10.5.





As the value of a variable changes, alarms are generated by the system whenever a threshold is exceeded. However, from the standpoint of the variable, only one over-limit alarm will be generated at one time, since the value of it can only exceed one threshold at one time. For example, if the value of a variable exceeds the HH threshold, only the HH threshold alarm will be generated, while no high threshold alarm will be generated at the same time.

However, in the case of the value of a variable exceeding two thresholds, it depends on whether the two thresholds are of the same type. If they are, then no new alarm will be generated, but it does not mean that the generated alarm will be restored. If not, then the generated alarm will be restored and a new alarm will be generated.

For the four types of over-limit alarms, you can define only one, a few, or all of them. As shown in Figure 10.6, you can define **Allow Variable**, **Threshold Variable**, and **Alarm Text**, which are described below in details.

| Alarm Data Info                                                   | rmation                            | ×          |
|-------------------------------------------------------------------|------------------------------------|------------|
| Basic Information<br>Database:<br>Priority:                       | Realtime Data:<br>Status Variable: |            |
| Analoge Alarm Setting<br>Variable<br>Hight:<br>High High:<br>Low: | Limited Value                      | Alarm Text |
| Digital Property Settin<br>Variable<br>On:<br>Off:                | ,                                  | Alarm Text |



- Allow Variable: defines whether to allow the system to generate the alarm. You can specify a variable for this. When the value of this variable is 1, the system will generate an alarm when the alarm condition is satisfied. When the value is 0, no alarms will be generated in the system. If no Allow Variable is specified, then alarms will be generated whenever necessary.
- **Threshold Variable**: sets threshold values for the alarm variable to be defined. The threshold values are displayed through variables.
- Alarm Text: defines the descriptive text of an alarm to be displayed when the alarm condition is satisfied. The alarm text should not be more than 32 bytes.

#### 10.3.3.3 Digital Alarm Configuration

The configuration in this section is valid only for digital alarm data (namely, bit variables).

Digital alarms have the following two states:

- **Open**: An alarm is generated when the variable value becomes 1.
- Close: An alarm is generated when the variable value becomes 0.

The digital alarm properties are composed of two columns: **Allow Variable** and **Alarm Text**, which are described in details below:

• Allow Variable: defines whether to allow the system to generate the alarm. You
can specify a variable for this. When the value of this variable is 1, the system will generate an alarm when the alarm condition is satisfied. When the value is 0, no alarms will be generated in the system. If no **Allow Variable** is specified, then alarms will be generated whenever necessary.

• Alarm Text: defines the descriptive text of an alarm to be displayed when the alarm condition is satisfied. The alarm text should not be more than 32 bytes.

# 10.4 Control - Alarm Window

The Alarm Window control displays the alarm information in a list.

In **Interface Editor**, click on the **Alarm Window** button **!** in the tool set on the left side. Move the mouse to the editting area on the right, and you can see the mouse become a cross. Drag the cross to draw a rectangle. The **Alarm Window** control will be displayed in this rectangle, as shown in Figure 10.7.

| Time | Event | Type | Variable | Name | Alarm | info | Alarm | value | Restore | value | Limit | value | Alarm | group |
|------|-------|------|----------|------|-------|------|-------|-------|---------|-------|-------|-------|-------|-------|
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |
|      |       |      |          |      |       |      |       |       |         |       |       |       |       |       |

#### Figure 10.7

After you draw the **Alarm Window** control, select the list with a left click, and you will see the **Property List** pane on the right side of the editting area, which lists properties of the control.

| Property        | Description                                                     | Remarks on Dynamic           |
|-----------------|-----------------------------------------------------------------|------------------------------|
|                 |                                                                 | Properties                   |
| Rows of Alarms  | Defines the maximum rows of alarms to be displayed in the alarm | No dynamic properties.       |
|                 | window.                                                         |                              |
|                 | When the system generates more than the defined maximum         |                              |
|                 | rows of alarms, the previous rows of alarms will be replaced.   |                              |
| Confirmed Color | Defines the color for the <b>Confirmed</b> alarms.              | The return value of the      |
| Restored Color  | Defines the color for the Restored alarms.                      | expression or dynamic script |
| Alarm Color     | Defines the color of the alarming alarms.                       | is the RGB value of the      |
|                 |                                                                 | defined colors.              |
| Display Field   | Defines the fields to be displayed in the Alarm Window list.    | No dynamic properties.       |
| Height Between  | Defines the height between list items.                          | No dynamic properties.       |

The properties of the Alarm Window control are described in the table below.

| Property     | Description                                               | Remarks on Dynamic     |
|--------------|-----------------------------------------------------------|------------------------|
|              |                                                           | Properties             |
| List Items   |                                                           |                        |
| Display Mode | Two display modes are available:                          | No dynamic properties. |
|              | Displaying all historical alarm information: displays all |                        |
|              | historical alarm information regarding alarming, alarm    |                        |
|              | confirmation, and alarm restoration.                      |                        |
|              | Displaying alarming information: displays only the        |                        |
|              | information regarding the alarming data.                  |                        |

# 10.5 Alarm Confirmation

After an alarm is generated, you can call the system function **alarm\_confirm** to confirm the alarm, to indicate that you are aware of or have processed the alarm.

Please note that the function **alarm\_confirm** confirms only the alarm record selected in the **Alarm Window** control. For more details on this function, please see section 10.7 System Function for System Alarms.

# 10.6 Configuration Examples

Suppose that you want to set alarm thresholds for the liquid level variable as follows: H = 750, HH = 800, L = 150, and LL = 50. You can set the thresholds as follows:

Add an int variable in the real-time database. Set the variable name to yewei\_alarm, the variable type to long, the data length to 4, and the initial value to 0, as shown in the Data Configuration dialog box in Figure 10.8.

| Dat | ta Setting     |                     | × |
|-----|----------------|---------------------|---|
|     | Data Setting   |                     |   |
|     | Data:          | yewei_alarm 🗆 Alias |   |
|     | Data Type:     | long                |   |
|     | Data Length:   | 4                   |   |
|     | Initial Value: | 0                   |   |
|     | Alias:         |                     |   |
|     | Description:   |                     |   |
|     |                |                     |   |
|     | ×              | OK X Cancel         |   |

Figure 10.8

Add other variables **yewei\_Hhigh**, **yewei\_high**, **yewei\_low**, and **yewei\_Llow** in the same way, and set their individual initial value to 800, 750, 150, and 50.

2. Add an alarm group **Alarm1** in **Aarm Configuration**. Right-click on the alarm group and open the **Alarm Data Configuration** dialog box. Configure the alarm conditions as shown in Figure 10.9, and then click on **OK**.

| Alarm Data Inf                | formation |                      |             | ×            |
|-------------------------------|-----------|----------------------|-------------|--------------|
| Basic Information             |           |                      |             |              |
| Database: tes                 | tbas1     | Realtime Data:       | yewei_alarm | $\mathbf{P}$ |
| Priority:                     |           | Status Variable:     |             |              |
|                               |           |                      |             |              |
| Analoge Alarm Setti<br>Variat | ng        | Limited Value        | Alarm T     | ext          |
| Hight:                        | <u>_</u>  | estbas1.yewei_high   | 🔎 滚位高报警     | 5            |
| High High:                    |           | :estbas1.yewei_Hhigh | 🔎 滚位高高报     | 警            |
| Low:                          |           | testbas1.yewei_low   | 深位低报警       | 5            |
| Low Low:                      |           | testbas1.yewei_Llow  | 》 滚位低低报     | 警            |
| Digital Property Sett         | ting      |                      | Alarm Text  |              |
| On:                           |           |                      |             |              |
| Off:                          |           | 니 · ·<br>제 · ·       |             | _            |
|                               |           |                      |             |              |
|                               | 🖌 ок      | X Can                | cel         |              |
|                               |           |                      |             |              |



3. Open Interface Editor, click on the Alarm Window button in the tool set on the left to draw an alarm window in the editting area on the right. Set the alarm window properties according to your needs and then save the interface. When you are back in the **Project Manager** window, compile a project and then select **Offline Simulation**, as shown in Figure 10.10.

| 🚨 EASY - Runtime          | 🗙 |
|---------------------------|---|
| File(F) Window(W) Help(H) |   |
| 液位报警图                     |   |
|                           |   |
|                           |   |
|                           |   |
|                           |   |
|                           | ] |
|                           |   |

### Figure 10.10

4. During the offlline simulation, select **Window** and then **Real-Time Data Display**, and you will see a dialog box as shown in Figure 10.11.

| Databaca                               | Data Name                 | Value               | ~ | Type | Data Nama | Value       |  |
|----------------------------------------|---------------------------|---------------------|---|------|-----------|-------------|--|
| balabase                               | toot data1                | value<br>v46v00v00  |   | more | Data Name | naccovivivi |  |
| testbasi                               | doto1                     | 70                  |   | mem  | di        | 099991111   |  |
| testbasi                               | data2                     | 20                  |   |      |           |             |  |
| testbasi                               | data2                     | 40                  |   |      |           |             |  |
| testbasi                               | data4                     | 40                  |   |      |           |             |  |
| testuas i                              | data6                     | 15                  |   |      |           |             |  |
| testbas1                               | vewei elerm               | 0                   |   |      |           |             |  |
| evetorn                                | Jogic True                | 1                   |   |      |           |             |  |
| evetern                                | Logic_False               | 0                   |   |      |           |             |  |
| system                                 | Logic_Faile               | 1                   |   |      |           |             |  |
| system                                 | Logic_Ard                 | 2                   |   |      |           |             |  |
| system                                 | Logic_Or                  | 3                   |   |      |           |             |  |
| system                                 | Logic_Not                 | 4                   |   |      |           |             |  |
| system                                 | Arithm Add                | 1                   |   |      |           |             |  |
| system                                 | Arithm Sub                | 2                   |   |      |           |             |  |
| system                                 | Arithm Mul                | 3                   |   |      |           |             |  |
| system                                 | Arithm Div                | 4                   |   |      |           |             |  |
| system                                 | Compare More              | 0                   |   |      |           |             |  |
| system                                 | Compare More E            | 1                   |   |      |           |             |  |
| system                                 | Compare Less              | 2                   |   |      |           |             |  |
| system                                 | Compare Less E            | 3                   |   |      |           |             |  |
| system                                 | Compare Equal             | 4                   |   |      |           |             |  |
| system                                 | Compare Not E.            | 5                   |   |      |           |             |  |
| system                                 | Double Const 0            | 0.00                |   |      |           |             |  |
| system                                 | HmiLoopCount              | 92                  |   |      |           |             |  |
| system                                 | HideMainWindow            | 0                   |   |      |           |             |  |
| system                                 | CurDateTime               | 12470174            |   |      |           |             |  |
| system                                 | loCycleTime               | 500                 |   |      |           |             |  |
| system                                 | FbdCycleTime              | 100                 |   |      |           |             |  |
| system                                 | PIcCycleTime              | 100                 |   |      |           |             |  |
| system                                 | FbdEnable                 | 1                   | ~ |      |           |             |  |
| system<br>system<br>)atabase<br>/alue: | PicCycleTime<br>FbdEnable | 100<br>1<br>ata Set |   | Data |           | Value:      |  |

Figure 10.11

Change the value of the variable yewei\_alarm to 30, and you will see an alarm

record displayed in the alarm window, as shown in Figure 10.12.

Figure 10.12

Change the value to 60, 760, and then 850, and a series of alarms will be generated

and displayed in the alarm window, as shown in Figure 10.13.

| 报警时间                                                                                                                                                          | 事件类型                                                                                                           | 支量名                                                                                                   | 报警类型                                                        | 报警值                              | 恢复值              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|------------------|
| 2007-08-11 16:13:55<br>2007-08-11 16:13:55<br>2007-08-11 16:13:14<br>2007-08-11 16:13:14<br>2007-08-11 16:11:56<br>2007-08-11 16:11:56<br>2007-08-11 16:11:30 | 报俠握恢<br>握恢<br>援<br>際<br>复<br>警<br>复<br>警<br>复<br>警<br>复<br>警<br>复<br>警<br>复<br>警<br>复<br>警<br>复<br>警<br>复<br>警 | yevei_slarn<br>yevei_slarn<br>yevei_slarn<br>yevei_slarn<br>yevei_slarn<br>yevei_slarn<br>yevei_slarn | 液位高振警!<br>液位高振警!<br>液位低振警!<br>液位低低振警!<br>液位低低振警!<br>液位低低振警! | 850<br>760<br>60<br>60<br>0<br>0 | 850<br>760<br>60 |

Figure 10.13

As shown above,

- When the variable value is less than or equal to 50, an LL over-limit alarm is generated and displayed;
- When the value is bigger than 50 but less than or equal to 150, the LL alarm is restored, and an L over-limit alarm is generated and displayed;
- When the value is bigger than 150 but less than 750, the L alarm is restored and no

other alarms will be generated;

- When the value is bigger than or equal to 750 but less than 800, a H over-limit alarm is generatd and displayed;
- When the value is bigger than or equal to 800, the H over-limit alarm is restored and an HH over-limit alarm is generated and displayed.

# 10.7 System Function for System Alarms

10.7.1 alarm\_confirm

Original Function: int alarm\_confirm(char \*window\_name, char

\*widget\_name)

Function Description: To confirm the alarm record currently selected in the

Alarm Window control.

Return Value: 0: Failed

1: Successful

**Parameters**: *window\_name*: Name of the window where the **Alarm Window** control is located.

*widget\_name*: Name of the graphic component in the alarm window.

**Example**: alarm\_confirm("main\_pic", "alarmwnd1")

# Chapter 11 Device Configuration

# 11.1 Overview

During actual operation, you might often need to link various on-site devices, such as PLC or I/O modules. EASY implements the modularized and layered design, which makes it easier for device management and device communication.

Device management of EASY is achieved in the following three layers:

- Link Layer: The links here refer to communication links, such as serial ports and network links. The links are categorized into master links and slave links (backup links). Usually, the master link takes the responsibility for communication. When the master link stops working (for example, timeout occurs), the backup link carries on for data transfer.
- Device Layer: The devices here refer to individual IO devices, such as the IO data acquisition module, grabber, or PLC. Multiple devices can be configured on one link.
- Device Data Layer: The device data refers to individual data stored in each IO device, such as the IR or HR register in Omron PLC. Each register is linked to a specific real-time database, which achieves the data exchange between the device and the linked real-time database.

# 11.2 Device Management

Considering that the device management of EASY is implemented in three layers, the device configuration needs to be implemented following the three steps below:

- 1. Add a communication link.
- 2. Add devices for each communication link.
- 3. Add data for each device.

The following sections will describe these three steps in details.

# 11.2.1 Adding Communication Links

At present, EASY supports the following types of links:

- Serial Port: refers to the links which use the serial port for communication.
- Common Link: refers to the links which use the virtual link or the internal bus for

communication.

- TCP Network Client: refers to the links which use the TCP/IP network for communication and the HMI as the TCP client.
- **TCP Network Server**: refers to the links which use the TCP/IP network for communication and the HMI as the TCP server.

Each type of communication links has their own configuration items depending on their specific characteristics. Meanwhile, all of the links share some common configuration items, which are configured in **Basic Link Information**.

Let's take a look at the basic link information configuration first and then the characteristic configuration for each link.

### 11.2.1.1 Configuring Basic Link Information

To configure the basic link information while adding a communication link, click on the **Basic Link Info** tab in the link configuration dialog box as shown in Figure 11.1.

| add serial commun    | ication link  | ×            |
|----------------------|---------------|--------------|
| Basic Setting Serial | Port Setting  |              |
|                      |               |              |
| Linkage Name:        |               |              |
| Scan Period(ms):     | 500           |              |
| Redundant Name:      | Master Link 💌 |              |
| Primary Linkage:     |               |              |
| Overtime(ms):        | 500           |              |
| Status Variable:     |               | $\mathbf{P}$ |
| Control Variable:    |               | $\mathbf{P}$ |
| Additional Param:    |               |              |
| 🔽 Disable Linka      | ge            |              |
|                      |               |              |
|                      | 🖌 确定          | 🦹 取消         |

Figure 11.1

The configuration parameters in Figure 11.1 are described as follows:

- Link Name: defines the name of the communication link you are going to add.
- Scan Interval: defines the interval for scanning this communication link. The system scans all the data stored in all the devices configured for this link based on the interval defined here. (unit: ms)
- Redundancy Type: is for the redundancy configuration for the link. The available redundancy types are Master Link and Backup Link. For details, see the Redundancy System section. If the added link does not support redundancy, you

need to set Redundancy Type to Master Link.

- Master Link Name: is for the redundancy configuration for the link. This parameter is valid only when **Redundancy Type** is **Backup Link**. It defines the name of the master link to which the backup link is associated. For details, see the Redundancy System section.
- **Timeout Time**: defines how long before the communication link times out. During the communication between the HMI and the link, the link is considered timed-out if the HMI does not get reply from the devices on this link after the period of time specified here. (unit: ms)
- **Status Variable**: must be an int variable. The value of this variable can be one of the following based on the current communication state of the link:
  - ➢ 0 -- Normal
  - > 1 -- Port not available
  - ➢ 2 -- Timeout
  - 3 -- Waiting (Default communication state of the backup link. When the master link stops working, the status of the backup link changes from Waiting to Normal.)
  - 4 -- Suspended (When the value of Control Variable becomes 1, the link scanning is suspended, which means the HMI stops communicating with the devices on the link.

If no status variable is defined, it means that you do not need to get the communication status of the link.

- **Control Variable**: Must be an int variable. The value can be one of the following:
  - > 0 -- Activated
  - 1 -- Suspended (namely, the link scanning is suspended, which means the HMI stops communicating with the devices on the link)

If no control variable is defined, it means that the link is always activated.

- Additional Parameter: defines the additional parameter for the link.
- **Disable the link**: When you check this option, the link will be disabled, which means the system will not load the link and the devices configured for the link.

### 11.2.1.2 Adding a Serial Port

Serial ports refer to the links which use the serial port for communication.

To add a serial port, do as follows:

1) Select **Device Configuration** on the left side of the **Project Manager** window, and then right-click on it.

You will see a right-click menu as shown in Figure 11.2.

| New Device Link 🔹 🕨 | Serial Port         |
|---------------------|---------------------|
| Delete Device Link  | Common Link         |
| New Device          | TCP Network Client  |
| Delete Device       | TCP Network Service |
| Modify              |                     |



2) Select **Serial Port**, and you will see a dialog box as shown in Figure 11.3.

| add serial commun    | ication link  |                       | ×  |
|----------------------|---------------|-----------------------|----|
| Basic Setting Serial | Port Setting  |                       |    |
|                      |               |                       | _  |
| Linkage Name:        |               |                       |    |
| Scan Period(ms):     | 500           |                       |    |
| Redundant Name:      | Master Link 💌 |                       |    |
| Primary Linkage:     |               |                       |    |
| Overtime(ms):        | 500           |                       |    |
| Status Variable:     |               | $\mathbf{P}$          |    |
| Control Variable:    |               | $\left \right\rangle$ |    |
| Additional Param:    |               |                       |    |
| 🔽 Disable Linka      | ge            |                       |    |
|                      |               |                       |    |
|                      | 🖌 确定          | X                     | 取消 |

Figure 11.3

- Click on the Basic Link Info tab, and you can configure the basic link information.
   For details, see section 11.2.1.1 Configuring Basic Link Information.
- 4) Click on the **Serial Communication Port Info** tab, and you can configure the parameters for serial port communication as shown in Figure 11.4.

| add serial com   | munication link   |           | ×         |
|------------------|-------------------|-----------|-----------|
| Basic Setting Se | rial Port Setting |           |           |
|                  |                   |           |           |
| Device:          | COM1              | -         |           |
| Baud Rate:       | 9600              | •         |           |
| Data Bit:        | 8                 | •         |           |
| Stop Bit:        | 1                 | •         |           |
| Parity:          | none              | •         |           |
|                  |                   |           |           |
|                  |                   |           |           |
|                  |                   |           |           |
|                  |                   | . mat ¥ 1 | <br>Япънк |
|                  |                   |           | 収7月       |

Figure 11.4

You can configure **Serial Port Number**, **Baud Rate**, **Data Bit**, **Stop Bit**, and **Verify Mode** of the serial port according to your actual needs.

### 11.2.1.3 Adding a Common Link

Common links refer to the links which use the virtual link or the internal bus for communication. For the virtual link, you can configure virtual IO devices. For details, see section 11.2.2.1 Adding a Device. Regarding the internal bus, it is currently reserved for future expansion since no devices in the system use the internal bus for communication.

To add a common link, do as follows:

1) Select **Device Configuration** on the left side of the **Project Manager** window and right-click on it.

|   | New Device Link 🔹 🕨 | Serial Port         |
|---|---------------------|---------------------|
|   | Delete Device Link  | Common Link         |
|   | New Device          | TCP Network Client  |
|   | Delete Device       | TCP Network Service |
|   | Modify              |                     |
| _ |                     |                     |

You will see a right-click menu as shown in Figure 11.5.

```
Figure 11.5
```

2) Select **Common Link**, and you will see a dialog box as shown in Figure 11.6.

| add | l common serial   | communication | link |              | X  |
|-----|-------------------|---------------|------|--------------|----|
| Ba  | sic Setting       |               |      |              |    |
| Г   |                   |               |      |              |    |
|     | Linkage Name:     |               |      |              |    |
|     | Scan Period(ms):  | 500           |      |              |    |
|     | Redundant Name:   | Master Link   | -    |              |    |
|     | Primary Linkage:  |               |      |              |    |
|     | Overtime(ms):     | 500           |      |              |    |
|     | Status Variable:  |               |      | $\mathbf{P}$ |    |
|     | Control Variable: |               |      | $\mathbf{P}$ |    |
|     | Additional Param: |               |      | _            |    |
|     | 🔲 Disable Linkag  | e             |      |              |    |
|     |                   |               |      |              |    |
|     |                   | 1             | 确定   | X I          | 取消 |

Figure 11.6

 Click on the Basic Link Info tab, and you can configure the basic link information. For details, see section 11.2.1.1 Configuring Basic Link Information. Common links have no characteristic configuration items of their own.

### 11.2.1.4 Adding a TCP Network Client

The TCP Network Client refers to the link which uses the TCP/IP network for communication and the HMI as the TCP client.

To add a TCP Network Client, do as follows:

1) Select **Device Configuration** on the left side of the **Project Manager** window and right-click on it.

| New Device Link 🔹 🕨 | Serial Port         |
|---------------------|---------------------|
| Delete Device Link  | Common Link         |
| New Device          | TCP Network Client  |
| Delete Device       | TCP Network Service |
| Modify              |                     |

You will see a right-click menu as shown in Figure 11.7.



 Select TCP Network Client, and you will see a dialog box as shown in Figure 11.8.

| Add TCP network c      | lient              |              | ×  |
|------------------------|--------------------|--------------|----|
| Basic Setting   TCP Cl | ient Configuration |              |    |
|                        |                    |              |    |
| Linkage Name:          |                    |              |    |
| Scan Period(ms):       | 500                |              |    |
| Redundant Name:        | Master Link 💌      |              |    |
| Primary Linkage:       |                    |              |    |
| Overtime(ms):          | 500                |              |    |
| Status Variable:       |                    | $\mathbf{P}$ |    |
| Control Variable:      |                    | $\mathbf{P}$ |    |
| Additional Param:      |                    |              |    |
| 🦵 Disable Linka        | ge                 |              |    |
|                        |                    |              |    |
|                        | 🚽 确定               | X I          | 2消 |

Figure 11.8

Click on the Basic Link Info tab, and you can configure the basic link information.
 For details, see section 11.2.1.1 Configuring Basic Link Information.
 Click on the TCP Network Client Configuration tab, and you can configure communication parameters for the TCP Client, as shown in Figure 11.9.

| Add TCP network       | client               | ×  |
|-----------------------|----------------------|----|
| Basic Setting TCP     | Client Configuration |    |
|                       |                      |    |
| Server IP<br>Address: |                      |    |
| Server Port:          | 8200                 |    |
|                       |                      |    |
|                       |                      |    |
|                       |                      |    |
|                       |                      |    |
|                       |                      |    |
|                       |                      |    |
|                       | 🧹 确定 🎽 取             | 2消 |
|                       |                      |    |

Figure 11.9

The parameters in Figure 11.9 are described as follows:

• Server IP Address: defines the IP address of the TCP server to which the HMI is to be connected.

• Server Port Number: specifies the port number of the TCP server to which the HMI is to be connected.

#### 11.2.1.5 Adding a TCP Network Server

The TCP Network Server refers to the link which uses the TCP/IP network for communication and the HMI as the TCP server.

To add a TCP Network Server, do as follows:

1) Select **Device Configuration** on the left side of the **Project Manager** window and right-click on it.

You will see a right-click menu as shown in Figure 11.10.

|   | New Device Link    | Serial Port         |
|---|--------------------|---------------------|
|   | Delete Device Link | Common Link         |
|   | New Device         | TCP Network Client  |
|   | Delete Device      | TCP Network Service |
|   | Modify             |                     |
| _ |                    |                     |



2) Select **TCP Network Server**, and you will see a dialog box as shown in Figure 11.11.

| Add TCP network s       | erver              | ×  |
|-------------------------|--------------------|----|
| Basic Setting   TCP Set | rver Configuration |    |
|                         |                    | _  |
| Linkage Name:           |                    |    |
| Scan Period(ms):        | 500                |    |
| Redundant Name:         | Master Link 💌      |    |
| Primary Linkage:        |                    |    |
| Overtime(ms):           | 500                |    |
| Status Variable:        |                    |    |
| Control Variable:       |                    |    |
| Additional Param:       |                    |    |
| 🗍 Disable Linkag        | ge                 |    |
|                         |                    |    |
|                         | 🖌 确定 🎽             | 取消 |
|                         |                    | 取得 |

Figure 11.11

Click on the Basic Link Info tab, and you can configure the basic link information.
 For details, see section 11.2.1.1 Configuring Basic Link Information.

Click on the TCP Network Client Configuration tab, and you can configure

| Add TCP network server                 | × |
|----------------------------------------|---|
| Basic Setting TCP Server Configuration |   |
|                                        |   |
|                                        |   |
| Server Port: 1                         |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |

communication parameters for the TCP client, as shown in Figure 11.12.

Figure 11.12

The parameter in Figure 11.12 is described as follows:

• Server Port Number: specifies the port number to be intercepted when the HMI runs as the TCP server.

### 11.2.1.6 Deleting a Communication Link

To delete an added communication link, do as follows:

 Select the communication link you want to delete from the left side of the Project Manager window and right-click on it.

You will see a right-click menu as shown in Figure 11.13.

 New Device Link

 Delete Device Link

 New Device

 Delete Device

 Delete Device

 Modify

Figure 11.13

2) Select Delete a Communication Link.

The selected link will be deleted.

### 11.2.1.7 Modifying the Link Configuration

To modify an added communication link, do as follows:

 Select the communication link you want to modify from the left side of the Project Manager window and right-click on it.

You will see a right-click menu as shown in Figure 11.14.



Figure 11.14

#### 2) Select Modify.

You can modify the link according to your needs.

# 11.2.2 Adding Devices

After you define a communication link, you can configure devices for the link. The devices which can be configured for a link depends on the type of the link. For example, if the communication link is a Common Link, only Virtual IO Devices can be configured; if the communication link is a TCP Network Client, only three devices can be configured, which are EASY HMI, Modbus TCP Primary Device, and Siemens S7 300 Series PLC (using the Hilscher Netlink-MPI adaptor).

For details about each device, please see section 11.3 List of Devices. The following part will focus on how to add a device.

#### 11.2.2.1 Adding a Device

To add a device, do as follows:

Select a link for which you want to add a device on the left side of the **Project Manager** window and right-click on it, as shown in Figure 11.15.



Figure 11.15

2) Select **Add a Device**, and you will see a dialog box as shown in Figure 11.16.

| Device Information                                                                                                                                                                          | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Device Information Setting<br>Device Name:<br>Device Address:<br>Device Driver:<br>Manufacturer:<br>Product Type:<br>Status Variable:<br>Additional Param:<br>Disable Device<br>Manufacture |   |
|                                                                                                                                                                                             |   |

Figure 11.16

The parameters in Figure 11.16 are described as follows:

- Device Name: specifies the name of the device to be added with which the HMI is to communcate.
- Device Address: differentiates various devices on the link. The definition of the

device address varies according to the protocol used by the device.

- Device Driver Name: specifies the name of the driver for the device to be added. The devices on the link use different protocols for communication. EASY provides device drivers for all of the devices based on the different protocols used.
- Manufacturer: specifies the name of the device manufacturer. It is allowed to leave it blank.
- Product Model: specifies the product model of the device. Considering that even devices of the same manufacturer might use different communication protocols, it is required to specify the product model in addition to the name of the device driver. For example, the modules of the ICP DAS I-7000 series are of different models, such as 4050 or 4117.
- **Status Variable**: must be an int variable. The value of this variable can be one of the following based on the current communication state of the link:
  - -1 -- Device initialization failed
  - ➢ 0 → Device initialization successful

If no status variable is defined, it means that you do not need to get the communication status of the device.

- Additional Parameter: defines the additional parameter for the device to be added.
- **Disable the device**: When you check this option, the device will be disabled, which means the system will not load or commnicate with the device.

#### 11.2.2.2 Deleting a Device

To delete an added device, do as follows:

 Select the device to be deleted on the left side of the Project Manager window and right-click on it.

You will see a right-click menu as shown in Figure 11.17.



Figure 11.17

2) Select **Delete a Device**.

The selected device will be deleted.

#### 11.2.2.3 Modifying a Device

To modify an added device, do as follows:

 Select the device to be modified on the left side of the Project Manager window and right-click on it.

You will see a right-click menu as shown in Figure 11.18.



Figure 11.18

2) Select Modify.

You can modify the device according to your needs.

# 11.2.3 Adding Data

After adding a device, you can add device data for this device. The device data which can be added varies depending on the device itself. For example, for Siemens S7 200 series PLC, only the device data of the I, Q, M, and VW types can be added; while for the Delta PLC, only the device data of the X, Y, M, and S types can be added.

## 11.2.3.1 Adding Data

To add a device data, do as follows:

 Select the device for which you want to add data on the left side of the **Project Manager** window and right-click on it.

You will see a right-click menu as shown in Figure 11.19.





2) Select **Add Data**, and you will see a dialog box as shown in Figure 11.20.

| Device Data Sett | ing 🗙                |
|------------------|----------------------|
| Data Setting     |                      |
| Data Type:       | <b>_</b>             |
| Data Group:      | 0 🔽 🔽 Ungroup        |
| Data Address:    |                      |
| Realtime Data:   |                      |
| Status Variable: |                      |
| Access Type:     | Circularly reading 💌 |
| 🔲 Disable Data   |                      |
|                  |                      |
| ×                | DK Cancel            |

Figure 11.20

The parameters in Figure 11.20 are described as follows:

- **Data Type**: defines the type of the device data to be added. The types of device data which can be added for a device varies depending on the device itself.
- Data Group: The concept of data group is adopted by EASY to enhance data transfer efficiency. For the data which can be accessed in the same mode and are of the same data type and data group, EASY allows packing them into one data package during the communication with the device, instead of having one data in one package. However, while grouping data, it is recommended to avoid packing two data which are far apart from each other into the same data group. For example, to access two data, VW0 and VW1000, from Simense S7-200 series PLC. If you pack these two data into the same data group, the system will need to read all the data from VW0 to VW1000 first and then picks out the two target data VW0 and VW1000. However, accessing such huge volume of data at one time might not be allowed by the protocol involved (eah protocol has its own maximum transfer volume), and thus results in communication failure. At present, the system supports 8 data groups in total.
- The **Do Not Group** option: When you check this option, the data will not be grouped, which means the system will access this data in a separate message. As stated above, you can group data so that the system can access multiple data at one time, which helps reduce message transfer and thus enhance communication efficiency. From this sense, it is recommended to group the data as much as possible. However, if you group a data which is too discrete, the returned communication message for the scattered data might be too long, which might cause communication failure. In this case, it is not wise to group the data; it will be preferable if the system accesses it separately.
- Data Address: defines the device address for differentiating variaous devices on the link. The definition of the device address varies depending on the protocol used by the device.
- Real-Time Data Name: specifies the real-time data in the real-time database

which is associated to the device data, which achieves data exchange between the device and the real-time database.

- **Status Variable Name**: must be an int variable. The value of this variable can be one of the following based on the current communication state of the data:
  - > 0 -- Normal
  - ➤ -1 -- System error
  - -2 -- Port error
  - ► -3 -- Communication timeout
  - ➤ -4 -- Message error
  - > Other -- Other error values defined in the protocol

If no status variable is defined, it means that you do not need to get the communication status of the data.

- Access Mode: defines how to access the data. At present, the system supports the following access modes:
  - Repeat Read Repeately reading the value of the device data and then assigning the value to the real-time database data to which the device data is associated.
  - Repeat Write Repeatedly write the value of the real-time database data to the associated device data
  - Repeat Read and Single Write Repeatedly reading the value of the device data and then assigning the value to the real-time database data to which the device data is associated, while writing the value to the associated device data only after the value of the real-time database data changes.
  - Single Write Writing the value to the associated device data only after the value of the real-time database data changes.
- **Disable the data**: When you check this option, the data will be disabled, which means the system will not load or access the data.

### 11.2.3.2 Deleting Data

To delete an added data, do as follows:

- Select the device for which you want to delete a data on the left side of the **Project Manager** window, and select the data to be deleted in the list pane on the right side.
- Right-click on the data, and you will see a right-click menu as shown in Figure 11.21.



Figure 11.21

3) Select **Delete Data**.

The selected data will be deleted.

### 11.2.3.3 Modifying Data

To modify an added data, do as follows:

- Select the device for which you want to modify a data on the left side of the **Project Manager** window, and select the data to be modified in the list pane on the right side.
- Right-click on the data, and you will see a right-click menu as shown in Figure 11.22.



Figure 11.22

### 3) Select **Modify**.

You can modify the data according to your needs.

# 11.3 Device List

This section lists all the devices supported by EASY at present.

These devices can be categorized as follows based on the types of the communication links:

- Serial Ports
- Common Links
- TCP Network Clients
- TCP Network Servers

# 11.3.1 Serial Ports

### 11.3.1.1 Modbus RTU Primary Devices

The HMI works as the Modubs primary device and uses the Modbus RTU protocol for communication.

At present, the system supports the following types of data:

| Data | Туре | Description |
|------|------|-------------|
|------|------|-------------|

| Data    | Туре          | Description                                                                             |
|---------|---------------|-----------------------------------------------------------------------------------------|
| DI      | bit           | Input node. Read-only.                                                                  |
|         |               | In the Modubs protocol, corresponding to:                                               |
|         |               | Function number: 02 (Read the discrete input)                                           |
| DO      | Bit           | Output node. Read and write.                                                            |
|         |               | In the Modubs protocol, corresponding to:                                               |
|         |               | Function number: 01 (Read the loop)                                                     |
|         |               | Function number: 15 (Write multiple loops)                                              |
| AI      | Short, ushort | Input register. Read-only.                                                              |
|         |               | In the Modubs protocol, corresponding to:                                               |
|         |               | Function number: 04 (Read the input register)                                           |
| AO      | Short, ushort | Holding register. Read and write.                                                       |
|         |               | In the Modubs protocol, corresponding to:                                               |
|         |               | Function number: 03 (Read the holding register)                                         |
|         |               | Function number: 16 (Write multiple registers)                                          |
| AI_BIT  | Bit           | To obtain a certain bit of the AI data.                                                 |
|         |               | Communiation Mode: Same as that for the AI data, corresponding to Function              |
|         |               | Number 04 (Read the input register) in the Modubs protocol.                             |
|         |               | Configuration Mode: If you want to obtain the third bit of the input register with the  |
|         |               | address as 10 (Note: The bit number starts from 0 – the lowest bit), then you will      |
|         |               | need to select the data type AI_BIT and set the data address as 10.3 while adding       |
|         |               | the device data.                                                                        |
| AO_BIT  | Bit           | To read and write a certain bit of the AO data.                                         |
|         |               | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|         |               | Nmber 03 (Read the holding register) and Function Number 16 (Write multiple             |
|         |               | registers) in the Modubs protocol.                                                      |
|         |               | Configuration Mode: If you want to read and write the third bit of the holding          |
|         |               | register with the address as 10 (Note: The bit number starts from 0 – the lowest        |
|         |               | bit), then you will need to select the data type <b>AO_BIT</b> and set the data address |
|         |               | as <b>10.3</b> while adding the device data.                                            |
| AI_LONG | long,ulong    | To resolute two AI data with continuous addresses as an int value.                      |
| 1       |               | Resolution Mode: The AI data with the lower address is resoluted as the higer 16        |
|         |               | bits of the int value, while the AI data with the higer address as the lower 16 bits.   |
|         |               | For example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the         |
|         |               | int value 0x1234.                                                                       |
|         |               | Communiation Mode: Same as that for the AI data, corresponding to Function              |

| Data    | Туре       | Description                                                                             |
|---------|------------|-----------------------------------------------------------------------------------------|
|         |            | Number 04 (Read the input register) in the Modubs protocol.                             |
|         |            | Configuration Mode: If you want to read the int value saved for the two data , AI10     |
|         |            | and Al11, then you will need to select the data type Al_LONG1 and set the data          |
|         |            | address as <b>10</b> while adding the device data.                                      |
| AI_LONG | long,ulong | To resolute two AI data with continuous addresses as an int value.                      |
| 2       |            | Resolution Mode: The AI data with the lower address is resoluted as the <b>lower 16</b> |
|         |            | bits of the int value, while the AI data with the higer address as the higher 16 bits.  |
|         |            | For example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the         |
|         |            | int value 0x3412.                                                                       |
|         |            | Communiation Mode: Same as that for the AI data, corresponding to Function              |
|         |            | Number 04 (Read the input register) in the Modubs protocol.                             |
|         |            | Configuration Mode: If you want to read the int value saved for the two data , AI10     |
|         |            | and Al11, then you will need to select the data type Al_LONG2 and set the data          |
|         |            | address as <b>10</b> while adding the device data.                                      |
| AO_LON  | long,ulong | To resolute two AO data with continuous addresses as an int value.                      |
| G1      |            | Resolution Mode: The AO data with the lower address is resoluted as the higer 16        |
|         |            | bits of the int value, while the AO data with the higer address as the lower 16         |
|         |            | <b>bits</b> . For example, the two AO data, AO10=0x12 and AO11=0x34, will be            |
|         |            | resoluted as the int value 0x1234.                                                      |
|         |            | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|         |            | Number 03 (Read the holding register) and Function Number 16 (Write multiple            |
|         |            | registers) in the Modubs protocol.                                                      |
|         |            | Configuration Mode: If you want to read and write the int value saved for the two       |
|         |            | data , AO10 and AO11, then you will need to select the data type <b>AO_LONG1</b> and    |
|         |            | set the data address as <b>10</b> while adding the device data.                         |
| AO_LON  | long,ulong | To resolute two AO data with continuous addresses as an int value.                      |
| G2      |            | Resolution Mode: The AO data with the lower address is resoluted as the <b>lower</b>    |
|         |            | 16 bits of the int value, while the AO data with the higer address as the higer 16      |
|         |            | <b>bits</b> . For example, the two AO data, AO10=0x12 and AO11=0x34, will be            |
|         |            | resoluted as the int value 0x3412.                                                      |
|         |            | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|         |            | Number 03 (Read the holding register) and Function Number 16 (Write multiple            |
|         |            | registers) in the Modubs protocol.                                                      |
|         |            | Configuration Mode: If you want to read and write the int value saved for the two       |
|         |            | data , AO10 and AO11, then you will need to select the data type AO_LONG2 and           |
|         |            | set the data address as <b>10</b> while adding the device data.                         |

| Data     | Туре  | Description                                                                             |
|----------|-------|-----------------------------------------------------------------------------------------|
| AI_FLOAT | float | To resolute two AI data with continuous addresses as a float value.                     |
| 1        |       | Resolution Mode: The AI data with the lower address is resoluted as the higer 16        |
|          |       | bits of the float value, while the AI data with the higer address as the lower 16       |
|          |       | bits.                                                                                   |
|          |       | Communiation Mode: Same as that for the AI data, corresponding to Function              |
|          |       | Number 04 (Read the input register) in the Modubs protocol.                             |
|          |       | Configuration Mode: If you want to read the float value saved for the two data,         |
|          |       | AI10 and AI11, then you will need to select the data type <b>AI_FLOAT1</b> and set the  |
|          |       | data address as <b>10</b> while adding the device data.                                 |
| AI_FLOAT | float | To resolute two AI data with continuous addresses as a float value.                     |
| 2        |       | Resolution Mode: The AI data with the lower address is resoluted as the <b>lower 16</b> |
|          |       | bits of the float value, while the AI data with the higer address as the higer 16       |
|          |       | bits.                                                                                   |
|          |       | Communiation Mode: Same as that for the AI data, corresponding to Function              |
|          |       | Number 04 (Read the input register) in the Modubs protocol.                             |
|          |       | Configuration Mode: If you want to read the float value saved for the two data,         |
|          |       | AI10 and AI11, then you will need to select the data type <b>AI_FLOAT2</b> and set the  |
|          |       | data address as <b>10</b> while adding the device data.                                 |
| AO_FLOA  | float | To resolute two AO data with continuous addresses as a float value.                     |
| T1       |       | Resolution Mode: The AO data with the lower address is resoluted as the higer 16        |
|          |       | bits of the float value, while the AO data with the higer address as the lower 16       |
|          |       | bits.                                                                                   |
|          |       | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|          |       | Number 03 (Read the holding register) and Function Number 16 (Write multiple            |
|          |       | registers) in the Modubs protocol.                                                      |
|          |       | Configuration Mode: If you want to read and write the float value saved for the two     |
|          |       | data, AO10 and AO11, then you will need to select the data type <b>AO_FLOAT1</b> and    |
|          |       | set the data address as <b>10</b> while adding the device data.                         |
| AO_FLOA  | float | To resolute two AO data with continuous addresses as a float value.                     |
| T2       |       | Resolution Mode: The AO data with the lower address is resoluted as the <b>lower</b>    |
|          |       | 16 bits of the float value, while the AO data with the higer address as the higer 16    |
|          |       | bits.                                                                                   |
|          |       | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|          |       | Number 03 (Read the holding register) and Function Number 16 (Write multiple            |
|          |       | registers) in the Modubs protocol.                                                      |
|          |       | Configuration Mode: If you want to read and write the float value saved for the two     |

| Data | Туре | Description                                                                   |
|------|------|-------------------------------------------------------------------------------|
|      |      | data, AO10 and AO11, then you will need to select the data type AO_FLOAT2 and |
|      |      | set the data address as <b>10</b> while adding the device data.               |

#### 11.3.1.2 Modbus RTU Slave Devices

The HMI works as the Modubs slave device and uses the Modbus RTU protocol for communication.

| Data | Туре          | Description                                     |
|------|---------------|-------------------------------------------------|
| DI   | bit           | Input node. Read-only.                          |
|      |               | In the Modubs protocol, corresponding to:       |
|      |               | Function number: 02 (Read the discrete input)   |
| DO   | bit           | Output node. Read and write.                    |
|      |               | In the Modubs protocol, corresponding to:       |
|      |               | Function number: 01 (Read the loop)             |
|      |               | Function number: 5 (Write a single loop)        |
|      |               | Function number: 15 (Write multiple loops)      |
| AI   | short, ushort | Input register. Read-only.                      |
|      |               | In the Modubs protocol, corresponding to:       |
|      |               | Function number: 04 (Read the input register)   |
| AO   | short, ushort | Holding register. Read and write.               |
|      |               | In the Modubs protocol, corresponding to:       |
|      |               | Function number: 03 (Read the holding register) |
|      |               | Function number: 6 (Write a single register)    |
|      |               | Function number: 16 (Write multiple registers)  |

At present, the system supports the following types of data:

Note:

When working as the Modbus slave device, the HMI receives requests from the primary station, carries out operations accordingly, and then responds to the primary station. The operation mode of the Modubs slave device can be described as "Passively Triggered". Therefore, the parameters **Data Group** and **Access Mode**, and the option **Disable the data** for the data configuration are meaningless, and thus are ignored by the system.

#### 11.3.1.3 Modbus ASCII Primary Devices

The HMI works as the Modubs primary device and uses the Modbus ASCII protocol

for communication.

At present, the system supports the following types of data:

| Data     | Туре          | Description                                                                                   |
|----------|---------------|-----------------------------------------------------------------------------------------------|
| DI       | bit           | Input node. Read-only.                                                                        |
|          |               | In the Modubs protocol, corresponding to:                                                     |
|          |               | Function number: 02 (Read the discrete input)                                                 |
| DO       | bit           | Output node. Read and write.                                                                  |
|          |               | In the Modubs protocol, corresponding to:                                                     |
|          |               | Function number: 01 (Read the loop)                                                           |
|          |               | Function number: 15 (Write multiple loops)                                                    |
| AI       | Short, ushort | Input register. Read-only.                                                                    |
|          |               | In the Modubs protocol, corresponding to:                                                     |
|          |               | Function number: 04 (Read the input register)                                                 |
| AO       | Short, ushort | Holding register. Read and write.                                                             |
|          |               | In the Modubs protocol, corresponding to:                                                     |
|          |               | Function number: 03 (Read the holding register)                                               |
|          |               | Function number: 16 (Write multiple registers)                                                |
| AI_BIT   | bit           | To obtain a certain bit of the AI data.                                                       |
|          |               | Communiation Mode: Same as that for the AI data, corresponding to Function                    |
|          |               | Number 04 (Read the input register) in the Modubs protocol.                                   |
|          |               | Configuration Mode: If you want to obtain the third bit of the input register with the        |
|          |               | address as 10 (Note: The bit number starts from 0 – the lowest bit), then you will            |
|          |               | need to select the data type AI_BIT and set the data address as 10.3 while adding             |
|          |               | the device data.                                                                              |
| AO_BIT   | bit           | To obtain a certain bit of the AO data.                                                       |
|          |               | Communiation Mode: Same as that for the AO data, corresponding to Function                    |
|          |               | Number 03 (Read the holding register) and Function Number 16 (Write multiple                  |
|          |               | registers) in the Modubs protocol.                                                            |
|          |               | Configuration Mode: If you want to obtain the third bit of the holding register with          |
|          |               | the address as 10 (Note: The bit number starts from 0 – the lowest bit), then you             |
|          |               | will need to select the data type <b>AO_BIT</b> and set the data address as <b>10.3</b> while |
|          |               | adding the device data.                                                                       |
| AI_LONG1 | long,ulong    | To resolute two AI data with continuous addresses as an int value.                            |
|          |               | Resolution Mode: The AI data with the lower address is resoluted as the higer 16              |
|          |               | bits of the int value, while the AI data with the higer address as the lower 16 bits.         |
|          |               | For example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the               |
|          |               | int value 0x1234.                                                                             |

| Data     | Туре       | Description                                                                             |
|----------|------------|-----------------------------------------------------------------------------------------|
|          |            | Communiation Mode: Same as that for the AI data, corresponding to Function              |
|          |            | Number 04 (Read the input register) in the Modubs protocol.                             |
|          |            | Configuration Mode: If you want to read the int value saved for the two data , AI10     |
|          |            | and Al11, then you will need to select the data type Al_LONG1 and set the data          |
|          |            | address as <b>10</b> while adding the device data.                                      |
| AI_LONG2 | Long,ulong | To resolute two AI data with continuous addresses as an int value.                      |
|          |            | Resolution Mode: The AI data with the lower address is resoluted as the <b>lower 16</b> |
|          |            | bits of the int value, while the AI data with the higer address as the higher 16 bits.  |
|          |            | For example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the         |
|          |            | int value 0x3412.                                                                       |
|          |            | Communiation Mode: Same as that for the AI data, corresponding to Function              |
|          |            | Number 04 (Read the input register) in the Modubs protocol.                             |
|          |            | Configuration Mode: If you want to read the int value saved for the two data , AI10     |
|          |            | and Al11, then you will need to select the data type Al_LONG2 and set the data          |
|          |            | address as <b>10</b> while adding the device data.                                      |
| AO_LONG1 | Long,ulong | To resolute two AO data with continuous addresses as an int value.                      |
|          |            | Resolution Mode: The AO data with the lower address is resoluted as the higer 16        |
|          |            | bits of the int value, while the AO data with the higer address as the lower 16         |
|          |            | bits. For example, the two AO data, AO10=0x12 and AO11=0x34, will be                    |
|          |            | resoluted as the int value 0x1234.                                                      |
|          |            | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|          |            | Number 03 (Read the holding register) and Function Number 16 (Write multiple            |
|          |            | registers) in the Modubs protocol.                                                      |
|          |            | Configuration Mode: If you want to read and write the int value saved for the two       |
|          |            | data , AO10 and AO11, then you will need to select the data type <b>AO_LONG1</b> and    |
|          |            | set the data address as <b>10</b> while adding the device data.                         |
| AO_LONG2 | long,ulong | To resolute two AO data with continuous addresses as an int value.                      |
|          |            | Resolution Mode: The AO data with the lower address is resoluted as the lower           |
|          |            | 16 bits of the int value, while the AO data with the higer address as the higer 16      |
|          |            | <b>bits</b> . For example, the two AO data, AO10=0x12 and AO11=0x34, will be            |
|          |            | resoluted as the int value 0x3412.                                                      |
|          |            | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|          |            | Number 03 (Read the holding register) and Function Number 16 (Write multiple            |
|          |            | registers) in the Modubs protocol.                                                      |
|          |            | Configuration Mode: If you want to read and write the int value saved for the two       |
|          |            | data , AO10 and AO11, then you will need to select the data type AO_LONG2 and           |

| Data      | Туре  | Description                                                                             |
|-----------|-------|-----------------------------------------------------------------------------------------|
|           |       | set the data address as <b>10</b> while adding the device data.                         |
| AI_FLOAT1 | float | To resolute two AI data with continuous addresses as a float value.                     |
|           |       | Resolution Mode: The AI data with the lower address is resoluted as the higer 16        |
|           |       | bits of the float value, while the AI data with the higer address as the lower 16       |
|           |       | bits.                                                                                   |
|           |       | Communiation Mode: Same as that for the AI data, corresponding to Function              |
|           |       | Number 04 (Read the input register) in the Modubs protocol.                             |
|           |       | Configuration Mode: If you want to read the float value saved for the two data,         |
|           |       | AI10 and AI11, then you will need to select the data type <b>AI_FLOAT1</b> and set the  |
|           |       | data address as <b>10</b> while adding the device data.                                 |
| AI_FLOAT2 | float | To resolute two AI data with continuous addresses as a float value.                     |
|           |       | Resolution Mode: The AI data with the lower address is resoluted as the <b>lower 16</b> |
|           |       | bits of the float value, while the AI data with the higer address as the higer 16       |
|           |       | bits.                                                                                   |
|           |       | Communiation Mode: Same as that for the AI data, corresponding to Function              |
|           |       | Number 04 (Read the input register) in the Modubs protocol.                             |
|           |       | Configuration Mode: If you want to read the float value saved for the two data,         |
|           |       | AI10 and AI11, then you will need to select the data type <b>AI_FLOAT2</b> and set the  |
|           |       | data address as <b>10</b> while adding the device data.                                 |
| AO_FLOAT  | float | To resolute two AO data with continuous addresses as a float value.                     |
| 1         |       | Resolution Mode: The AO data with the lower address is resoluted as the higer 16        |
|           |       | bits of the float value, while the AO data with the higer address as the lower 16       |
|           |       | bits.                                                                                   |
|           |       | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|           |       | Number 03 (Read the holding register) and Function Number 16 (Write multiple            |
|           |       | registers) in the Modubs protocol.                                                      |
|           |       | Configuration Mode: If you want to read and write the float value saved for the two     |
|           |       | data, AO10 and AO11, then you will need to select the data type <b>AO_FLOAT1</b> and    |
|           |       | set the data address as <b>10</b> while adding the device data.                         |
| AO_FLOAT  | float | To resolute two AO data with continuous addresses as a float value.                     |
| 2         |       | Resolution Mode: The AO data with the lower address is resoluted as the lower           |
|           |       | 16 bits of the float value, while the AO data with the higer address as the higer 16    |
|           |       | bits.                                                                                   |
|           |       | Communiation Mode: Same as that for the AO data, corresponding to Function              |
|           |       | Number 03 (Read the holding register) and Function Number 16 (Write multiple            |
|           |       | registers) in the Modubs protocol.                                                      |

| Data | Туре | Description                                                                          |
|------|------|--------------------------------------------------------------------------------------|
|      |      | Configuration Mode: If you want to read and write the float value saved for the two  |
|      |      | data, AO10 and AO11, then you will need to select the data type <b>AO_FLOAT2</b> and |
|      |      | set the data address as <b>10</b> while adding the device data.                      |

#### 11.3.1.4 Mitsubishi FX2N Series PLC

The default values of the related communication parameters are listed as follows:

| Parameter               | Default Value |
|-------------------------|---------------|
| Communication Port Type | RS485         |
| Data Bit                | 7             |
| Stop Bit                | 1             |
| Baud Rate               | 9600          |
| Parity Check            | Even          |
| Device Address          | 0             |

At present, the system supports the following types of data, as listed in the table below:

| Data   | Туре               | Address Format | Description                            |
|--------|--------------------|----------------|----------------------------------------|
| Х      | bit                | 000            | External input node                    |
| Y      | bit                | 000            | External output node                   |
| М      | bit                | DDD            | Internal auxiliary node                |
| S      | bit                | DDD            | Special auxiliary node                 |
| Т      | bit                | DDD            | Timer node                             |
| С      | bit                | DDD            | Couter node                            |
| TV     | short, ushort      | DDD            | Timer register                         |
| CV     | short, ushort      | DDD            | Counter register                       |
| D      | short, ushort      | DDD            | Data register                          |
| D_ARRA | short, ushort data | DDD~DDD        | Data array stored in the data register |
| Y      | array              |                |                                        |

Note: D stands for the decimal system, and O stands for the octal system.

### 11.3.1.5 Mitsubishi Q02H PLC

The default values of the related communication parameters are listed as follows:

|--|

| Parameter               | Default Value |
|-------------------------|---------------|
| Communication Port Type | RS232         |
| Data Bit                | 8             |
| Stop Bit                | 1             |
| Baud Rate               | 115200        |
| Parity Check            | Odd           |
| Device Address          | 0             |

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре          | Address Format | Description                           |
|------|---------------|----------------|---------------------------------------|
| Х    | bit           | ННН            | External input node                   |
| Y    | bit           | ННН            | External output node                  |
| М    | bit           | DDDD           | Internal auxiliary node               |
| L    | bit           | DDDD           | Auxiliary node                        |
| F    | bit           | DDDD           | Alarm node                            |
| V    | bit           | DDDD           | Edge-triggered node                   |
| В    | bit           | ННН            | Link register node                    |
| тс   | bit           | DDD            | Timer loop                            |
| SS   | bit           | DDD            | Holding timer node                    |
| SC   | bit           | DDD            | Holding timer loop                    |
| CS   | bit           | DDD            | Counter node                          |
| СС   | bit           | DDD            | Counter loop                          |
| SB   | bit           | ННН            | Special connection register node      |
| S    | bit           | DDDD           | Stepping register                     |
| DX   | bit           | ННН            | Direct input node                     |
| DY   | bit           | ННН            | Direct output node                    |
| TS   | bit           | DDD            | Timer node                            |
| W    | short, ushort | ННН            | Connection register                   |
| TN   | short, ushort | DDD            | Current timer value                   |
| SN   | short, ushort | DDD            | Current value of the holding register |
| CN   | short, ushort | DDD            | Current counter value                 |
| R    | short, ushort | DDDD           | File register                         |
| SW   | short, ushort | ННН            | Special connection register           |
| Z    | short, ushort | D              | Index register                        |
| ZR   | short, ushort | ННН            | File register                         |

| Data | Туре          | Address Format | Description   |
|------|---------------|----------------|---------------|
| D    | short, ushort | DDDD           | Data register |

Note: D stands for the decimal system, and H stands for the hex system with the range as 0-F.

### 11.3.1.6 ICP DAS I-7000 Series (ADVANTECH ADAM4000/4100 Series) IO Modules

At present, the system supports the following types of data, as listed in the table below:

| Data         | Туре  | Address Format | Description                                               |
|--------------|-------|----------------|-----------------------------------------------------------|
| DI           | Bit   | Decimal        | DI input, for DI or mixed modules                         |
| DO           | Bit   |                | DO output, for DO or mixed modules                        |
| AI           | Float |                | Al input, for Al modules and only can be read as project  |
|              |       |                | quantities                                                |
| AO           | Float |                | AO output, for AO modules and only can be written in      |
|              |       |                | as project quantities                                     |
| COUNTER      | Long  |                | Counter, for the modules with the counter function and    |
|              |       |                | for reading the counter value                             |
| CLEARCOUNTER | Bit   |                | For the modules with the counter function.                |
|              |       |                | If you set the data value as 1, the counter value will be |
|              |       |                | reset back to 0.                                          |

Notes:

- For the IO modules of this series, you need to specify the specific product model considering the slight difference in the communication protocols used. Regarding the model numbers containing D, for example 7045D, you can put the model number as 7045.
- 2) The IO modules of this series support two types of parity checks: checksum enable and checksum disable. While adding a device, if you do not specify the additional parameter for the device, then checksum enable is used; to activate checksum disable, you will need to enter checksum=0 in the Additional Parameter text box.

### 11.3.1.7 Siemens S7-200 Series PLC

The default values of the related communication parameters are listed as follows:

| Parameter               | Default Value |
|-------------------------|---------------|
| Communication Port Type | RS485         |
| Data Bit                | 8             |

| Parameter      | Default Value |
|----------------|---------------|
| Stop Bit       | 1             |
| Baud Rate      | 9600          |
| Parity Check   | Even          |
| Device Address | 2             |

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре         | Address format | Description                                     |
|------|--------------|----------------|-------------------------------------------------|
| I    | Bit          | DDD.O          | Digital input                                   |
| Q    | Bit          | DDD.O          | Digital Output                                  |
| М    | Bit          | DDD.O          | Mark bit of the internal register               |
| VW   | short,ushort | DDDD           | Variable of the internal register (word)        |
| AIW  | short,ushort | DDDD           | Analog input                                    |
| AQW  | short,ushort | DDDD           | Analog output                                   |
| VB   | char,uchar   | DDDD           | Variable of the internal register (byte)        |
| VD   | long, ulong  | DDDD           | Variable of the internal register (double-byte) |

Note: D stands for the decimal system, and O stands for the octal system.

#### Notes:

Siemens 200 series PLC supports two communication modes, **single item** and **multi items**. While adding a device, if you do not specify the additional parameter or the specified additional parameter is **multiitem=0**, then **single item** is used; to activate **multi items**, you will need to enter **multiitem=1** in the **Additional Parameter** text box.

The two communication modes, **single item** and **multi items** are described in details as below:

- single item: allows accessing only one type of data in one communication message. For example, to access the four data I0.0, I1.0, Q0.0, and Q1.0 in the single item mode, you will need to use two communication messages (one for accessing I0.0 and I1.0, and the other for accessing Q0.0 and Q1.0), because the I data and the Q data are of two different types.
- multi items: allows accessing various types of data in one communication message. To access the same four data mentioned above, the multi items mode allows accessing all of the four data at one time in one message, separating I0.0 and I1.0 as one item and Q0.0 and Q1.0 as another item.

From the example above, it is obvious that the **multi items** mode provides higher communication efficiency compared with the **single item** mode. However, accessing

various types of data in one message might make the message too long to be allowed by the Siemens communication protocol (256 bytes allowed the most). If a message contains data more than 256 bytes, it will end up with communication failure.

In terms of EASY, the **multi items** mode will group the data accessed in the same mode ine one message, which will maximize the communication efficiency. However, it might cause the communication message to be longer than 256 bytes allowed by the protocol involved. Considering all of this, it can be concluded that the **multi items** mode is suitable for the situations with small volume of communication data only.

#### 11.3.1.8 Siemens S7-300 Series PLC (Using the MPI Adaptor)

|                         | -             |
|-------------------------|---------------|
| Parameter               | Default Value |
| Communication Port Type | RS232         |
| Data Bit                | 8             |
| Stop Bit                | 1             |
| Baud Rate               | 19200         |
| Parity Check            | Odd           |
| Device Address          | 2             |

The default values of the related communication parameters are listed as follows:

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре         | Address format | Description                       |
|------|--------------|----------------|-----------------------------------|
| I    | bit          | DDD.O          | Digital input                     |
| Q    | bit          | DDD.O          | Digital Output                    |
| М    | bit          | DDD.O          | Mark bit of the internal register |
| PIB  | char,uchar   | DDDD           | Analog input (byte)               |
| PIW  | short,ushort | DDDD           | Analog input (word)               |
| PID  | long, ulong  | DDDD           | Analog input (double word)        |
| PQB  | char,uchar   | DDDD           | Analog output (byte)              |
| PQW  | short,ushort | DDDD           | Analog output (word)              |
| PQD  | long, ulong  | DDDD           | Analog output (double word)       |
| DBX  | bit          | DDDD.O         | Data block (bit)                  |
| DBB  | char,uchar   | DDDD           | Data block (byte)                 |
| DBW  | short,ushort | DDDD           | Data block (word)                 |
| DBD  | long, ulong  | DDDD           | Data block (double word)          |

Note: D stands for the decimal system, and O stands for the octal system.

#### 11.3.1.9 Omron PLC

| Parameter               | Default Value |
|-------------------------|---------------|
| Communication Port Type | RS232         |
| Data Bit                | 7             |
| Stop Bit                | 2             |
| Baud Rate               | 9600          |
| Parity Check            | Even          |
| Device Address          | 0             |

#### The default values of the related communication parameters are listed as follows:

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре         | Address format | Description            |
|------|--------------|----------------|------------------------|
| IR   | bit          | DDDBB          | I/O and internal relay |
| HR   | bit          | DDDBB          | Holding relay          |
| AR   | bit          | DDDBB          | Auxiliary relay        |
| LR   | bit          | DDDBB          | Link relay             |
| TC   | short,ushort | DDD            | Timer/Counter register |
| DM   | short,ushort | DDDD           | Data register          |

Note: D stands for the decimal system, and B stands for the bit coding with the range as 0-15.

### 11.3.1.10 LG Series PLC (Using the CNET Protocol)

The default values of the related communication parameters are listed as follows:

| Parameter               | Default Value |
|-------------------------|---------------|
| Communication Port Type | RS232         |
| Data Bit                | 8             |
| Stop Bit                | 1             |
| Baud Rate               | 19200         |
| Parity Check            | N/A           |
| Device Address          | 0             |

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре         | Address format | Description              |
|------|--------------|----------------|--------------------------|
| Р    | bit          | DDDH           | Input/Output relay       |
| М    | bit          | DDDH           | Internal auxiliary relay |
| L    | bit          | DDDH           | Link relay               |
| к    | bit          | DDDH           | Holding relay            |
| С    | bit          | DDDH           | Counter relay            |
| Т    | bit          | DDDH           | Timer relay              |
| F    | bit          | DDDH           | Special relay            |
| D    | short,ushort | DDD            | Data register            |
| S    | short,ushort | DDDD           | Register                 |
| CV   | short,ushort | DDDD           | Current counter value    |
| TV   | short,ushort | DDDD           | Current timer value      |

Note: D stands for the decimal system, and H stands for the hex system with the range as 0-F.

# 11.3.1.11 LG Series PLC (Using the LOAD Protocol)

The default values of the related communication parameters are listed as follows:

| Parameter               | Default Value |
|-------------------------|---------------|
| Communication Port Type | RS232         |
| Data Bit                | 8             |
| Stop Bit                | 1             |
| Baud Rate               | 38400         |
| Parity Check            | N/A           |
| Device Address          | 0             |

At present, the system supports the following types of data, as listed in the table

| below: |      |                |                          |  |  |
|--------|------|----------------|--------------------------|--|--|
| Data   | Туре | Address format | Description              |  |  |
| Р      | bit  | DDDH           | Input/Output relay       |  |  |
| М      | bit  | DDDH           | Internal auxiliary relay |  |  |
| L      | bit  | DDDH           | Link relay               |  |  |
| К      | bit  | DDDH           | Holding relay            |  |  |
| С      | bit  | DDDH           | Counter relay            |  |  |
| Т      | bit  | DDDH           | Timer relay              |  |  |
| F      | bit  | DDDH           | Special relay            |  |  |
| Data | Туре         | Address format | Description           |
|------|--------------|----------------|-----------------------|
| D    | short,ushort | DDD            | Data register         |
| S    | short,ushort | DDDD           | Register              |
| CV   | short,ushort | DDDD           | Current counter value |
| TV   | short,ushort | DDDD           | Current timer value   |

Note: D stands for the decimal system, and H stands for the hex system with the range as 0-F.

#### 11.3.1.12 Delta PLC

The default values of the related communication parameters are listed as follows:

| Parameter               | Default Value |
|-------------------------|---------------|
| Communication Port Type | RS232         |
| Data Bit                | 7             |
| Stop Bit                | 1             |
| Baud Rate               | 9600          |
| Parity Check            | Even          |
| Device Address          | 1             |

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре         | Address format | Description                    |
|------|--------------|----------------|--------------------------------|
| Х    | bit          | 000            | Digital input relay            |
| Y    | bit          | 000            | Digital output relay           |
| М    | bit          | DDD            | Internal auxiliary relay       |
| S    | bit          | DDD            | Sequential control relay       |
| Т    | bit          | DDD            | Timer relay                    |
| С    | bit          | DDD            | Counter relay                  |
| D    | short,ushort | DDDD           | Data register                  |
| TV   | short,ushort | DDDD           | Timer register                 |
| CV   | short,ushort | DDDD           | Counter register (word)        |
| CV2  | long, ulong  | DDDD           | Counter register (double word) |

Note: D stands for the decimal system, and O stands for the octal system with the range as 0-7.

#### 11.3.1.13 Panasonic NAIS FP Series PLC

| Parameter               | Default Value |
|-------------------------|---------------|
| Communication Port Type | RS232         |
| Data Bit                | 8             |
| Stop Bit                | 1             |
| Baud Rate               | 9600          |
| Parity Check            | Odd           |
| Device Address          | 1             |

The default values of the related communication parameters are listed as follows:

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре         | Address format | Description                         |
|------|--------------|----------------|-------------------------------------|
| х    | bit          | DDDH           | Digital input relay                 |
| Y    | bit          | DDDH           | Digital output relay                |
| R    | bit          | DDDH           | Internal auxiliary relay            |
| L    | bit          | DDDH           | Link control relay                  |
| Т    | bit          | DDD            | Timer relay                         |
| С    | bit          | DDD            | Counter relay                       |
| DT   | short,ushort | DDD            | Data register                       |
| SV   | short,ushort | DDD            | Preset timer/counter value register |
| EV   | short,ushort | DDD            | Actual timer/counter value register |

Note: D stands for the decimal system, and H stands for the octal system with the range as 0-F.

#### Emerson Series PLC (Using the Modbus RTU protocol) 11.3.1.14

| The default values of the related communication parameters are listed as follows: |               |  |  |
|-----------------------------------------------------------------------------------|---------------|--|--|
| Parameter                                                                         | Default Value |  |  |
| Communication Port Type                                                           | RS485         |  |  |
| Data Bit                                                                          | 8             |  |  |
| Stop Bit                                                                          | 1             |  |  |
| Baud Rate                                                                         | 19200         |  |  |
| Parity Check                                                                      | Even          |  |  |
| Device Address                                                                    | 1             |  |  |

. . 4 4 4 4 . . . .

| Data | Туре         | Address format | Description                 |
|------|--------------|----------------|-----------------------------|
| х    | bit          | 000            | Digital input relay         |
| Y    | bit          | 000            | Digital output relay        |
| М    | bit          | DDDD           | Auxiliary relay             |
| SM   | bit          | DDD            | Special auxiliary relay     |
| S    | bit          | DDD            | Stepping register           |
| Т    | bit          | DDD            | Timer loop                  |
| С    | bit          | DDD            | Counter loop                |
| D    | short,ushort | DDDD           | Data register               |
| SD   | short,ushort | DDD            | Special data register       |
| Z    | short,ushort | DDD            | Index register              |
| ΤV   | short,ushort | DDD            | Timer                       |
| CV   | short,ushort | DDD            | Counter                     |
| D_D  | long,ulong   | DDDD           | Data register (double word) |
| CV_D | long,ulong   | DDD            | Counter (double word)       |

At present, the system supports the following types of data, as listed in the table below:

Note: D stands for the decimal system, and H stands for the octal system with the range as 0-F.

## 11.3.2 Communication Links

#### 11.3.2.1 Virtual IO Devices

EASY provides internal virtual IO devices. They can be accessed and operated in almost the same mode as the actual devices. The only difference is that reading and writing the virtual devices do not involve the accessing of the serial port or the TCP/IP network. Besides, you can use the virtual IO devices for tesing purpose.

At present, the system supports the following types of data, as listed in the table below:

| Data Symbol | Data Type | Function                |
|-------------|-----------|-------------------------|
| DI          | bit       | Read-only DI bits       |
| DO          | bit       | Write-only DO bits      |
| DIO         | bit       | Read and write digitals |

| Data Symbol | Data Type                                 | Function                                        |  |  |
|-------------|-------------------------------------------|-------------------------------------------------|--|--|
| AI          | short,ushort                              | Read-only AI values                             |  |  |
| AO          | short,ushort                              | Write-only AO values                            |  |  |
| AIO         | short,ushort                              | Read and write analogs                          |  |  |
|             | bit,char,uchar,short,us                   | Auto-increment int variable; 1 added each time; |  |  |
| INC         | hort,long,ulong                           | read and write                                  |  |  |
|             | flaat daubla                              | Auto-increment float variable; 1 added each     |  |  |
| INCE        | libat,uuuble                              | time; read and write                            |  |  |
| DEC         | bit,char,uchar,short                      | Auto-decrement int variable; 1 added each time; |  |  |
| DEC         | ushort,long,ulong read and write          |                                                 |  |  |
| DECE        | flagt double                              | Auto-decrement float variable; 1 added each     |  |  |
| DECF        |                                           | time; read and write                            |  |  |
| DAND        | bit,char,uchar,short                      | Random int variable, one random value           |  |  |
| RAND        | ushort,long,ulong                         | generated each time                             |  |  |
|             |                                           | To set the communication status variable, with  |  |  |
|             | bit,char,uchar,short<br>ushort,long,ulong | the value range as below:                       |  |  |
| COMERR      |                                           | 1: Link timeout                                 |  |  |
|             |                                           | 2: System error                                 |  |  |
|             |                                           | 0: Normal                                       |  |  |

## 11.3.3 TCP Network Clients

#### 11.3.3.1 EASY HMIs

TCP network clients are used for the mutual communication between EASY HMIs. You can add EASY HMI devices, and the HMIs can mutually access the real-time data from the real-time database of each other.

While adding EASY HMI devices, you must set the server port number to 8200.

#### 11.3.3.2 Modbus TCP Primary Devices

The HMI works as the Modubs primary device and uses the Modbus TCP/IP protocol

for communication.

According to the Modbus TCP/IP protocal, the default port number is 502.

At present, the system supports the following types of data, as listed in the table below:

| Data     | Туре          | Function Description                                                                          |
|----------|---------------|-----------------------------------------------------------------------------------------------|
| DI       | bit           | Input node. Read-only.                                                                        |
|          |               | In the Modubs protocol, corresponding to:                                                     |
|          |               | Function number: 02 (Read the discrete input)                                                 |
| DO       | bit           | Output node. Read and write.                                                                  |
|          |               | In the Modubs protocol, corresponding to:                                                     |
|          |               | Function number: 01 (Read the loop)                                                           |
|          |               | Function number: 15 (Write multiple loops)                                                    |
| AI       | short, ushort | Input register. Read-only.                                                                    |
|          |               | In the Modubs protocol, corresponding to:                                                     |
|          |               | Function number: 04 (Read the input register)                                                 |
| AO       | short, ushort | Holding register. Read and write.                                                             |
|          |               | In the Modubs protocol, corresponding to:                                                     |
|          |               | Function number: 03 (Read the holding register)                                               |
|          |               | Function number: 16 (Write multiple registers)                                                |
| AI_BIT   | bit           | To obtain a certain bit of the AI data.                                                       |
|          |               | Communiation Mode: Same as that for the AI data, corresponding to Function Number             |
|          |               | 04 (Read the input register) in the Modubs protocol.                                          |
|          |               | Configuration Mode: If you want to obtain the third bit of the input register with the        |
|          |               | address as 10 (Note: The bit number starts from 0 – the lowest bit), then you will need       |
|          |               | to select the data type AI_BIT and set the data address as 10.3 while adding the              |
|          |               | device data.                                                                                  |
| AO_BIT   | bit           | To read and write a certain bit of the AO data.                                               |
|          |               | Communiation Mode: Same as that for the AO data, corresponding to Function Nmber              |
|          |               | 03 (Read the holding register) and Function Number 16 (Write multiple registers) in the       |
|          |               | Modubs protocol.                                                                              |
|          |               | Configuration Mode: If you want to read and write the third bit of the holding register       |
|          |               | with the address as 10 (Note: The bit number starts from 0 – the lowest bit), then you        |
|          |               | will need to select the data type <b>AO_BIT</b> and set the data address as <b>10.3</b> while |
|          |               | adding the device data.                                                                       |
| AI_LONG1 | long,ulong    | To resolute two AI data with continuous addresses as an int value.                            |
|          |               | Resolution Mode: The AI data with the lower address is resoluted as the higer 16 bits         |
|          |               | of the int value, while the AI data with the higer address as the lower 16 bits. For          |

| Data     | Туре       | Function Description                                                                         |
|----------|------------|----------------------------------------------------------------------------------------------|
|          |            | example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the int value        |
|          |            | 0x1234.                                                                                      |
|          |            | Communiation Mode: Same as that for the AI data, corresponding to Function Number            |
|          |            | 04 (Read the input register) in the Modubs protocol.                                         |
|          |            | Configuration Mode: If you want to read the int value saved for the two data , AI10 and      |
|          |            | AI11, then you will need to select the data type AI_LONG1 and set the data address as        |
|          |            | 10 while adding the device data.                                                             |
| AI_LONG2 | long,ulong | To resolute two AI data with continuous addresses as an int value.                           |
|          |            | Resolution Mode: The AI data with the lower address is resoluted as the <b>lower 16 bits</b> |
|          |            | of the int value, while the AI data with the higer address as the higher 16 bits. For        |
|          |            | example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the int value        |
|          |            | 0x3412.                                                                                      |
|          |            | Communiation Mode: Same as that for the AI data, corresponding to Function Number            |
|          |            | 04 (Read the input register) in the Modubs protocol.                                         |
|          |            | Configuration Mode: If you want to read the int value saved for the two data , AI10 and      |
|          |            | AI11, then you will need to select the data type <b>AI_LONG2</b> and set the data address as |
|          |            | 10 while adding the device data.                                                             |
| AO_LONG1 | long,ulong | To resolute two AO data with continuous addresses as an int value.                           |
|          |            | Resolution Mode: The AO data with the lower address is resoluted as the higer 16 bits        |
|          |            | of the int value, while the AO data with the higer address as the <b>lower 16 bits</b> . For |
|          |            | example, the two AO data, AO10=0x12 and AO11=0x34, will be resoluted as the int              |
|          |            | value 0x1234.                                                                                |
|          |            | Communiation Mode: Same as that for the AO data, corresponding to Function                   |
|          |            | Number 03 (Read the holding register) and Function Number 16 (Write multiple                 |
|          |            | registers) in the Modubs protocol.                                                           |
|          |            | Configuration Mode: If you want to read and write the int value saved for the two data,      |
|          |            | AO10 and AO11, then you will need to select the data type <b>AO_LONG1</b> and set the        |
|          |            | data address as <b>10</b> while adding the device data.                                      |
| AO_LONG2 | long,ulong | To resolute two AO data with continuous addresses as an int value.                           |
|          |            | Resolution Mode: The AO data with the lower address is resoluted as the <b>lower 16</b>      |
|          |            | bits of the int value, while the AO data with the higer address as the higer 16 bits. For    |
|          |            | example, the two AO data, AO10=0x12 and AO11=0x34, will be resoluted as the int              |
|          |            | value 0x3412.                                                                                |
|          |            | Communiation Mode: Same as that for the AO data, corresponding to Function                   |
|          |            | Number 03 (Read the holding register) and Function Number 16 (Write multiple                 |
|          |            | registers) in the Modubs protocol.                                                           |

| Data      | Туре  | Function Description                                                                         |
|-----------|-------|----------------------------------------------------------------------------------------------|
|           |       | Configuration Mode: If you want to read and write the int value saved for the two data ,     |
|           |       | AO10 and AO11, then you will need to select the data type <b>AO_LONG2</b> and set the        |
|           |       | data address as <b>10</b> while adding the device data.                                      |
| AI_FLOAT1 | float | To resolute two AI data with continuous addresses as a float value.                          |
|           |       | Resolution Mode: The AI data with the lower address is resoluted as the higer 16 bits        |
|           |       | of the float value, while the AI data with the higer address as the <b>lower 16 bits</b> .   |
|           |       | Communiation Mode: Same as that for the AI data, corresponding to Function Number            |
|           |       | 04 (Read the input register) in the Modubs protocol.                                         |
|           |       | Configuration Mode: If you want to read the float value saved for the two data, AI10         |
|           |       | and AI11, then you will need to select the data type <b>AI_FLOAT1</b> and set the data       |
|           |       | address as <b>10</b> while adding the device data.                                           |
| AI_FLOAT2 | float | To resolute two AI data with continuous addresses as a float value.                          |
|           |       | Resolution Mode: The AI data with the lower address is resoluted as the <b>lower 16 bits</b> |
|           |       | of the float value, while the AI data with the higer address as the higer 16 bits.           |
|           |       | Communiation Mode: Same as that for the AI data, corresponding to Function Number            |
|           |       | 04 (Read the input register) in the Modubs protocol.                                         |
|           |       | Configuration Mode: If you want to read the float value saved for the two data, AI10         |
|           |       | and AI11, then you will need to select the data type AI_FLOAT2 and set the data              |
|           |       | address as <b>10</b> while adding the device data.                                           |
| AO_FLOAT  | float | To resolute two AO data with continuous addresses as a float value.                          |
| 1         |       | Resolution Mode: The AO data with the lower address is resoluted as the higer 16 bits        |
|           |       | of the float value, while the AO data with the higer address as the <b>lower 16 bits</b> .   |
|           |       | Communiation Mode: Same as that for the AO data, corresponding to Function                   |
|           |       | Number 03 (Read the holding register) and Function Number 16 (Write multiple                 |
|           |       | registers) in the Modubs protocol.                                                           |
|           |       | Configuration Mode: If you want to read and write the float value saved for the two          |
|           |       | data, AO10 and AO11, then you will need to select the data type <b>AO_FLOAT1</b> and set     |
|           |       | the data address as <b>10</b> while adding the device data.                                  |
| AO_FLOAT  | float | To resolute two AO data with continuous addresses as a float value.                          |
| 2         |       | Resolution Mode: The AO data with the lower address is resoluted as the lower 16             |
|           |       | bits of the float value, while the AO data with the higer address as the higer 16 bits.      |
|           |       | Communiation Mode: Same as that for the AO data, corresponding to Function                   |
|           |       | Number 03 (Read the holding register) and Function Number 16 (Write multiple                 |
|           |       | registers) in the Modubs protocol.                                                           |
|           |       | Configuration Mode: If you want to read and write the float value saved for the two          |
|           |       | data, AO10 and AO11, then you will need to select the data type <b>AO_FLOAT2</b> and set     |

| Data | Туре | Function Description                                        |
|------|------|-------------------------------------------------------------|
|      |      | the data address as <b>10</b> while adding the device data. |

#### 11.3.3.3 Siemens S7 300 Series PLC (Using the Hilscher Netlink - MPI Adaptor)

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре              | Address Format | Description                              |
|------|-------------------|----------------|------------------------------------------|
| I    | bit               | DDD.O          | Digital input                            |
| Q    | bit               | DDD.O          | Digital output                           |
| М    | bit               | DDD.O          | Mark bit of the internal register        |
| IB   | char,uchar        | DDDD           | Digital input (byte)                     |
| QB   | char,uchar        | DDDD           | Digital output (byte)                    |
| MB   | char,uchar        | DDDD           | Mark bit of the internal register (byte) |
| С    | short,ushort      | DDDD           | Counter register                         |
| Т    | short,ushort      | DDDD           | Timer register                           |
| DBX  | bit               | DDDD.O         | Data block (bit)                         |
| DBB  | char,uchar        | DDDD           | Data block (byte)                        |
| DBW  | short,ushort      | DDDD           | Data block (word)                        |
| DBD  | long, ulong,float | DDDD           | Data block (double word)                 |

Note: D stands for the decimal system, and O stands for the octal system.

## 11.3.4 TCP Network Servers

#### 11.3.4.1 Modbus TCP Slave Devices

The HMI works as the Modubs slave device and uses the Modbus TCP/IP protocol for communication. According to the Modbus TCP/IP protocol, the default port is 502.

At present, the system supports the following types of data, as listed in the table below:

| Data | Туре | Function Description                          |  |
|------|------|-----------------------------------------------|--|
| DI   | bit  | Input node. Read-only.                        |  |
|      |      | In the Modubs protocol, corresponding to:     |  |
|      |      | Function number: 02 (Read the discrete input) |  |
| DO   | bit  | Output node. Read and write.                  |  |
|      |      | In the Modubs protocol, corresponding to:     |  |

| Data | Туре          | Function Description                            |  |
|------|---------------|-------------------------------------------------|--|
|      |               | Function number: 01 (Read the loop)             |  |
|      |               | Function number: 5 (Write a single loop)        |  |
|      |               | Function number: 15 (Write multiple loops)      |  |
| AI   | short, ushort | Input register. Read-only.                      |  |
|      |               | In the Modubs protocol, corresponding to:       |  |
|      |               | Function number: 04 (Read the input register)   |  |
| AO   | short, ushort | Holding register. Read and write.               |  |
|      |               | In the Modubs protocol, corresponding to:       |  |
|      |               | Function number: 03 (Read the holding register) |  |
|      |               | Function number: 6 (Write a single register)    |  |
|      |               | Function number: 16 (Write multiple registers)  |  |

Note:

When working as the Modbus slave device, the HMI receives requests from the primary station, carries out operations accordingly, and then responds to the primary station. The operation mode of the Modubs slave device can be described as "Passively Triggered". Therefore, the parameters **Data Group** and **Access Mode**, and the option **Disable the data** for the data configuration are meaningless, and thus are ignored by the system.

## 11.4 System Variables for Device Configuration

| Database Name  | Variable Name       | Data Type | Default Value | Description                           |
|----------------|---------------------|-----------|---------------|---------------------------------------|
| system         | loEnable            | bit       | 1             | The available values are described as |
|                |                     |           |               | follows:                              |
|                |                     |           |               | • 1: Device management function       |
|                |                     |           |               | enabled                               |
|                |                     |           |               | • 0: Device management function       |
|                |                     |           |               | disabled                              |
| hmi_system_set | link_timeout_wnd_on | bit       | 1             | The available values are described as |
|                |                     |           |               | follows:                              |
|                |                     |           |               | • 1: The system automatically         |
|                |                     |           |               | displays the communication            |
|                |                     |           |               | timeout prompt window when            |
|                |                     |           |               | communication timeout occurs.         |
|                |                     |           |               | • 0: The system does not display      |
|                |                     |           |               | the timeout prompt window             |
|                |                     |           |               | when communiation timeout             |
|                |                     |           |               | occurs.                               |

| link_timeout_wnd_x | short | -1 | Defines the value of the X-axis in the top<br>left corner of the communication timeout<br>prompt window. |
|--------------------|-------|----|----------------------------------------------------------------------------------------------------------|
| link_timeout_wnd_y | Short | -1 | Defines the value of the Y-axis in the top                                                               |
|                    |       |    | left corner of the communication timeout                                                                 |
|                    |       |    | prompt window.                                                                                           |

## 11.5 Example for Device Configuration

Take the Siemens S7-200 series PLC for example to explain how to configure a device.

Suppose that the S7-200 PLC application involoves the following variables: I0.0, I0.1, I0.2, I0.3, Q0.0, Q0.1, Q0.2, Q0.3, M10.1, M10.2, M10.3, and M10.4, and that all these data requires data exchange with the HMI.

In this case, do the device configuration as follows:

1. Under the **Real-Time Database** node in the **Project Manager** window, create a database named **global**, and then create three data groups **IO**, **DO**, and **PARAM** under the **global** node, as shown in Figure 11.23.



Figure 11.23

Under the three added data groups, add real-time database data, as described

below:

5) For the IO data group, add the data Input0, Input1, Input2, and Input3.Take Input0 for example. Do the data configuration as shown in Figure 11.24 and Figure 11.25.

| Data:          | Input0 |   | 🗆 Alias |
|----------------|--------|---|---------|
| Data Type:     | array  | • |         |
| Data Length:   | 1      |   |         |
| Initial Value: | 0      |   |         |
| Alias:         |        |   |         |
| Description:   |        |   |         |

Figure 11.24

| EASY Project Manager - test_easy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                          |         |               |       |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------|---------|---------------|-------|-----|
| Project(P) View( $\underline{V}$ ) Tool( $\underline{T}$ ) Configur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ration( <u>C</u> ) Help( <u>H</u>    | )                        |         |               |       |     |
| 🌮 🚺 🔜 😒 🎯                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ရှာ 🤝 😟                  | &.      |               |       |     |
| project manager 🛛 🕹 🕹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | data name                            | data type                | length  | initial value | alias | de: |
| <ul> <li>project</li> <li>real-time database</li> <li>test</li> <li>deltabase</li> <li>de</li></ul> | Input0<br>Input1<br>Input2<br>Input3 | bit<br>bit<br>bit<br>bit | 1 1 1 1 | 0<br>0<br>0   |       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <                                    |                          |         |               |       | >   |
| Ready                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                          |         |               |       | 1.  |

Figure 11.25

 For the DO data group, add the data Output0, Output1, Output2, and Output3. Take Output0 for example. Do the data configuration as shown in Figure 11.26 and Figure 11.27.

| Data:          | Output0 | 🗆 Alias |
|----------------|---------|---------|
| Data Type:     | array   | •       |
| Data Length:   | 1       |         |
| Initial Value: | 0       |         |
| Alias:         |         |         |
| Description:   |         |         |

Figure 11.26



Figure 11.27

 For the PARAM data group, add the data Var1, Var2, Var3, and Var4.
 Take Var1 for example. Do the data configuration as shown in Figure 11.28 and Figure 11.29.

| Data:          | Var1 |   | 🗆 Alias |
|----------------|------|---|---------|
| Data Type:     | bit  | • |         |
| Data Length:   | 1    |   |         |
| Initial Value: | 0    |   |         |
| Alias:         |      |   |         |
| Description:   |      |   |         |

Figure 11.28



Figure 11.29

2. Under the **Device Configuration** node, add a communication link **link1** of the **Serial Port** type. Configure the link parameters as follows:

Baud Rate: 9600; Data Bit: 8; Stop Bit: 1; Parity Check: Even

After configuring the link, add a device for the link, as shown in Figure 11.30.

| Device Information Setting<br>Device Name: plc_test<br>Device Address: 2<br>Device Driver: Simense ST 200 PLC<br>Manufacturer:<br>Product Type:<br>Status Variable:<br>Additional Param:<br>Disable Device<br>OK<br>Cancel |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Figure 11.30

The parameters for device configuration in Figure 11.30 are described as follows:

- **Device Name**: **plc\_test** (The device name can be defined to anything of your choice.)
- Device Address: S7-200 (The default device address is 2.)
- Device Driver Application: Select Siemens S7 200 Series PLC. This setting is very crucial. Make sure that all the settings satisfy your needs. However, considering that the S7-200 series all use the PPI communication protocol, Siemens S7 200 Series PLC is selected for all S7-200 PLCs as the driver application.

3. Add data for device communication. The actual types of data which might exist in the PLC can all be associated to the variables in the real-time database.

1) **PLC input register I**: Associate the data from I0.0 to I0.3 individually to the real-time database data from global.Input0 to global.Input3. Take I0.0 for example. Configure thee data as shown in Figure 11.31.

| Device Data Setting 🛛 🗙 |                      |              |  |  |  |  |
|-------------------------|----------------------|--------------|--|--|--|--|
| -Data Setting           |                      |              |  |  |  |  |
| Data Type:              | I                    |              |  |  |  |  |
| Data Group:             | 0                    | 🗌 Ungroup    |  |  |  |  |
| Data Address:           | 0.0                  |              |  |  |  |  |
| Realtime Data:          | global. Input0       | $\mathbf{P}$ |  |  |  |  |
| Status Variable:        |                      | $\mathbf{P}$ |  |  |  |  |
| Access Type:            | Circularly reading 💌 |              |  |  |  |  |
| 🔲 Disable Data          |                      |              |  |  |  |  |
|                         |                      |              |  |  |  |  |
| Ľ                       | OK 🙎 Cancel          |              |  |  |  |  |

Figure 11.31

 PLC input register Q: Associate the data from Q0.0 to Q0.3 individually to the real-time database data from global.Output0 to global.Output3. Take Q0.0 for example. Configure the data as shown in Figure 11.32.

| Device Data Sett | ing                    | ×            |  |  |
|------------------|------------------------|--------------|--|--|
| Data Setting     |                        |              |  |  |
| Data Type:       | Q                      |              |  |  |
| Data Group:      | 0                      | 🗌 Ungroup    |  |  |
| Data Address:    | 0.0                    |              |  |  |
| Realtime Data:   | global. Input0         | $\mathbf{P}$ |  |  |
| Status Variable: |                        | $\mathbf{P}$ |  |  |
| Access Type:     | Circularly reading a 💌 |              |  |  |
| 🗖 Disable Data   |                        |              |  |  |
|                  |                        |              |  |  |
| V OK X Cancel    |                        |              |  |  |

Figure 11.32

3) **PLC bit register M**: Associate the data from M10.1 to M10.4 individually to the real-time database data from global.Var1 to global.Var4. Take M10.1 for example. Configure the data as shown in Figure 11.33.

| Device Data Setting 🛛 🗙 |                      |  |  |
|-------------------------|----------------------|--|--|
| -Data Setting           |                      |  |  |
| Data Type:              | M                    |  |  |
| Data Group:             | 0 Ungroup            |  |  |
| Data Address:           | 10.0                 |  |  |
| Realtime Data:          | global. Vari         |  |  |
| Status Variable:        |                      |  |  |
| Access Type:            | Circularly reading a |  |  |
| 🖵 Disable Data          |                      |  |  |
|                         |                      |  |  |
| V OK Kancel             |                      |  |  |

Figure 11.33

The configured communication data will be listed as shown in Figure 11.34.

| 🖻 EASY Project Hanager - test_easy                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                                                                                      |        |                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project(₽) View(⊻) Tool(፲) Configuration(⊆) Help(Ӈ)                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                                                                      |        |                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                       |
| 🥱 🖾 🛸 🎯 🖻                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | ۰ 💫 💆                                                                                | ۲ 😨    | , ≴,                                                                                                                                                                                           |     |                                                                                                                                                                                                                                                                                                                                                                       |
| project manager $	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data type                 | Data ad                                                                              | Data g | Real-time data                                                                                                                                                                                 | Sta | Read and write mode                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>project</li> <li>project</li> <li>real-time database</li> <li>test</li> <li>plo</li> <li>pARAM</li> <li>MII</li> <li>MII vindov</li> <li>Real-time related data</li> <li>custom data</li> <li>vindor</li> <li>Function block</li> <li>Ladder</li> <li>Paraseter</li> <li>Real-time data record</li> <li>History data record</li> <li>History data record</li> <li>dernice configuration</li> <li>clink</li> <li>plclink</li> <li>sodule configuration</li> </ul> | I I I I Q Q Q Q M M M M M | 0.0<br>0.1<br>0.2<br>0.3<br>0.0<br>0.1<br>0.2<br>0.3<br>10.1<br>10.2<br>10.3<br>10.4 |        | global. Input0<br>global. Input1<br>global. Input2<br>global. Output0<br>global. Output0<br>global. Output2<br>global. Output2<br>global. Var1<br>global. Var2<br>global. Var3<br>global. Var4 |     | Circularly reading<br>Circularly reading<br>Circularly reading<br>Circularly reading<br>Circularly reading and once writing<br>Circularly reading and once writing |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <                         |                                                                                      |        |                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                       |
| Ready                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                      |        |                                                                                                                                                                                                |     | CUR NUN /                                                                                                                                                                                                                                                                                                                                                             |

Figure 11.34

# Chapter 12 Development of Control Function Blocks

#### 12.1 Overview

For the monitoring system, the monitoring hardware devices are compulsory. These devices can be PLCs, DCSs, intelligent instruments or PC-based industrial computers (referred to as PC-Based devices hereinafter). They can also be the currently popular Fieldbus Systems. In the control system, these devices take the leading roles for control; the input and output of process signals can only be transferred to the field devices through these hardware devices.

For the existing control systems, there are two methods of implementing control policies, as described below:

Method 1

The PLCs, DCSs, and intelligent instruments all have internal ready-to-use control algorithms. The preset control solutions and policies can be implemented after some configuration is done.

However, this method has its disadvantages, as listed below:

 Firstly, the internal control policies of these control devices are hard to be modified.

Some control policies are even not allowed to be modified during the system operation.

- Secondly, the control capabilities of these control devices are very limited. They are only capable of implementing some simple and routine control.
   For example, the logic operations of DCSs are of low speed, and the control algorithms of PLCs are of limited varieties. These disadvantages seriously restrict the device performance to be brought into full play.
- Method 2

These control devices can communicate conveniently with PCs, and use the various algorithms provided by some function blocks of the configuration software on the PC. This makes up for the inabilities of the computing and control capabilities of these control devices.

At present, none of the HMIs out there in the market are capable of solving the issues mentioned above. However, EASY manages to embed complicated control policies into interfaces of the HMI, and thus easily implement complicated control functions.

## 12.2 Basic Concepts

In the EASY applications, the main control functions are implemented through scripts or ladder diagrams. Besides, EASY provides various control function blocks. Each function block stands for an operation, algorighm, or variable (which are the basic execution elements of policies), similar to an integrated circuit block which has multiple inputs and outputs. Each input or output pin has a unique name, and the meaning and value range of each pin vary according to the type of the function block.

### 12.3 Architecture

Basic function blocks can be called repeatedly and are assigned with a name with each call. The sequence in which basic function blocks are executed is decided by how they are sorted under the **Function Block** node. In general, they are executed from top to bottom.

There are five categories of basic function blocks:

- Variable Function Blocks: provide variable links for the other function blocks.
- Mathematical Operation Function Blocks: carry out mathematical operations between various variables.
- Programming Control Function Blocks: carry out jumps between policies.
- Logic Function Blocks: carry out logic control and logic operations.
- Control Algorithm Function Blocks: carry out operations and controls according to standard control algorithms.

All input and output data for function blocks come from the real-time database. All you need to do is just to associate the input and output variables of each function block to the real-time database data. The function blocks are executed periodically, which ensures the control reliability.

A complete function block is mainly composed of the following parts:

- Function Block Name: specifies the name of the function block; can be user-defined.
- Function Block Type: specifies the type of the function block, such as Arithmetics, Comparison, and Logic.
- Function Block Sub-Type: specifies the sub-type of the function block; for example, the arithmetic function block has four sub-types, Addition, Subtraction, Multiplication, and Division.

- Function Block Allow Variable: refers to a bit data in the real-time database. When the value of the variable is 1, the function block will be executed; when the value is 0, the function block will not be executed.
- Function block input and output variables: A function block may have multiple input and output variables. The function block is executed as follows: The data is obtained from the input variable and operated according to the type of the function block, and the calculated result is then saved to the output variable.

For example, the arithmetic addition function block has two input variables IN1 and IN2, and one output variable OUT. The function block is executed as this: OUT=IN1+IN2, where IN1 and IN2 each can be associated with a real-time data, and OUT can be associated with another real-time data. After the function block is executed, the value of the real-time data associated with OUT equals to the sum of the two real-time data associated with IN1 and IN2.

## 12.4 Operational Instructions

#### 12.4.1 Adding a Function Block

To add a control block, do as follows:

1) Select **Function Block** on the left side of the **Project Manager** window and right-click on it.

You will see a right-click menu as shown in Figure 12.1.





 Select Add a Function Block, and you will see a dialog box as shown in Figure 12.2.

| FBD Configura                                                      | ation                                                  | ×          |
|--------------------------------------------------------------------|--------------------------------------------------------|------------|
| FBD Configur<br>FBD Name:<br>FBD Type:<br>FBD Sub_typ<br>Allowable | ation<br>add<br>Arithmetic<br>a: Add<br>Database: data | ▼<br>▼     |
| Variable:                                                          | Data Name: data                                        | . <u> </u> |
| 3                                                                  | Сок                                                    | Cancel     |



The configuration parameters in Figure 12.2 are described as follows:

- Function Block Name: defines the name of the function block.
- **Function Block Type**: defines the specific type of the function block, such as Arithmetic, Comparison, and Logic.
- **Function Block Sub-Type**: defines the sub-type of the function block; for example, the Arithmetic Function Block has four sub-types, which are Addition, Subtraction, Multiplication, and Division.
- Allow Variable: refers to a bit data in the real-time database. When the value of this variable is 1, the function block will be executed; when the value is 0, the function block will not be executed.

After adding a function block, select it in the navigator on the left side of the **Project Manager** window, and you will see a list of data displayed on the right side of the window, as shown in Figure 12.3.

| 🛓 EASY Project Tanager - test                                                                                                                                                                                                                                                                                                                                                                                   | _eas <del>y</del> |                     |        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|--------|--|
| $Project(\underline{P})  View(\underline{V})  Tool(\underline{T})  Configuration(\underline{C})  Help(\underline{H})$                                                                                                                                                                                                                                                                                           |                   |                     |        |  |
| 🌮 🧭 🔜 🔊 🖉                                                                                                                                                                                                                                                                                                                                                                                                       | ) 🔕 💆 🖕 📢         | \$ 💆 🤌 .            |        |  |
| project manager X                                                                                                                                                                                                                                                                                                                                                                                               | Parameter name    | Real-time data name | data n |  |
| <ul> <li>project</li> <li>real-time database</li> <li>test</li> <li>global</li> <li>HII window</li> <li>Real-time related data</li> <li>custom data</li> <li>window</li> <li>Function block</li> <li>add</li> <li>Ladder</li> <li>Parameter</li> <li>Real-time data record</li> <li>Alars configuration</li> <li>redundant configuration</li> <li>device configuration</li> <li>sodule configuration</li> </ul> | IN1<br>IN2<br>OUT |                     |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>          |                     |        |  |
| Ready                                                                                                                                                                                                                                                                                                                                                                                                           |                   | CUR                 | NUN    |  |



Right-click on the parameter **IN1**, and you will see a right-click menu as shown in Figure 12.4.





Select **Modify** from the right-click menu or double-click on the parameter **IN1**, and you will see a dialog box as shown in Figure 12.5.

| FBD Parameter Setting                                                            | × |
|----------------------------------------------------------------------------------|---|
| FBD Parameter Setting<br>Parameter Name: IN1<br>Realtime Database:<br>Data Name: |   |
| 🖌 OK 🌋 Cancel                                                                    |   |

Figure 12.5

Click on the icon *P* on the right side, select the associated data fromm the real-time database, ad then click on **OK** to save the configuration.

You can configure the parameters **IN2** and **OUT** in the same way as the parameter **IN1**.

12.4.2 Deleting a Function Block

To delete a function block, do as follows:

1) Select the added function block on the left side of the **Project Manager** window, and right-click on it.

You will see a right-click menu as shown in Figure 12.6.



Figure 12.6

 Select Delete a Function Block, and you will see a dialog box as shwon in Figure 12.7.



Figure 12.7

3) Click on OK.

The selected function block will be deleted.

#### 12.4.3 Configuring a Function Block

To configure a function block, do as follows:

 Select the added function block on the left side of the **Project Manager** window, and right-click on it.

You will see a right-click menu as shown in Figure 12.8.





2) Select **Configure**, and you will see a dialog box as shown in Figure 12.9.

| FB | D Configurat           | ion                     |                    | × |
|----|------------------------|-------------------------|--------------------|---|
|    | -FBD Configurat        | i on                    |                    |   |
|    | FBD Name:              | add                     |                    |   |
|    | FBD Type:              | Arithmeti               | c                  | ~ |
|    | FBD Sub_type:          | Add                     |                    | • |
|    | Allowable<br>Variable: | Database:<br>Data Name: | databasel<br>datal | 2 |
|    | Ľ                      | OK                      | X Cancel           |   |

Figure 12.9

3) After you do all the configuration, click on **OK** to save the settings.

## 12.5 Input and Output Instructions

#### 12.5.1 Arithmetic Function Blocks

#### 12.5.1.1 Addition

Function: To add two operands; for example, OUT = IN1 + IN2. Input:

| Input | Data Type             | Description         |
|-------|-----------------------|---------------------|
| INI1  | All data types except | Summand of addition |
|       | string                | Summand of addition |
| INO   | All data types except | Addand of addition  |
| INZ   | string                |                     |

Output:

| Output | Data Type                    | Description         |
|--------|------------------------------|---------------------|
| OUT    | All data types except string | Sum of two operands |

#### 12.5.1.2 Subtraction

Function: To subtract one one operand from aother; for example, OUT = IN1 - IN2. Input:

| Input | Data Type             | Description   |
|-------|-----------------------|---------------|
| 1014  | All data types except | Minuend of    |
|       | string                | subtraction   |
|       | All data types except | Subtrahend of |
| IINZ  | string                | subtraction   |

Output:

| Output | Data Type             | Description        |
|--------|-----------------------|--------------------|
|        | All data types except | Difference between |
|        | string                | two operands       |

#### 12.5.1.3 Multiplication

Function: To multiply one operand by another; for examle,  $OUT = IN1 \times IN2$ . Input:

| Input | Data Type             | Description      |
|-------|-----------------------|------------------|
| 1011  | All data types except | Multiplicand of  |
|       | string                | multiplication   |
| IND   | All data types except | Multiplicator of |
|       | string                | multiplication   |

Output:

| Output | Data Type             | Description    |
|--------|-----------------------|----------------|
|        | All data types except | Product of two |
| 001    | string                | operands       |

#### 12.5.1.4 Division

Function: To divide one operand by another; for example, OUT = IN1 / IN2.
Input:

| Input | Data Type             | Description          |
|-------|-----------------------|----------------------|
| IN1   | All data types except | Dividend of division |
|       | string                |                      |
| IND   | All data types except | Divisor of division  |
| IINZ  | string                |                      |

Output:

| Output | Data Type             | Description     |
|--------|-----------------------|-----------------|
|        | All data types except | Quotient of two |
| 001    | string                | operands        |

#### 12.5.2 Comparison Function Blocks

#### 12.5.2.1 Greater Than

Function: To carry out the Greater Than operation between two operands. Input:

| Input | Data Type             | Description |
|-------|-----------------------|-------------|
| INI1  | All data types except | Comparend 1 |
|       | string                | Comparand   |
| IND   | All data types except | Comparend 2 |
| IINZ  | string                | Comparand 2 |

Output:

| Output | Data Type     | Description            |
|--------|---------------|------------------------|
|        |               | If IN1 is greater than |
| OUT    | Bit data only | IN2, then $OUT = 1;$   |
|        |               | otherwise, OUT = 0.    |

#### 12.5.2.2 Equal To Or Greater Than

Function: To carry out the Equal To Or Greater Than operation between two operands. Input:

| Input | Data Type             | Description |
|-------|-----------------------|-------------|
| IN1   | All data types except | Comparend 1 |
|       | string                | Comparand   |
| INIO  | All data types except | Comparend 2 |
| IINZ  | string                | Comparand 2 |

Output:

| Output | Data Type     | Description            |
|--------|---------------|------------------------|
| OUT    | Bit data only | If IN1 is equal to or  |
|        |               | greater than IN2, then |
|        |               | OUT = 1; otherwise,    |
|        |               | OUT = 0.               |

#### 12.5.2.3 Less Than

Function: To carry out the Less Than operation between two operands. Input:

| Input | Data Type             | Description |
|-------|-----------------------|-------------|
| IN1   | All data types except | Comparend 1 |
|       | string                | Comparand   |
| IND   | All data types except | Comparend 2 |
| IINZ  | string                | Comparand 2 |

Output:

| Output | Data Type     | Description              |
|--------|---------------|--------------------------|
|        |               | If IN1 is less than IN2, |
| OUT    | Bit data only | then OUT = 1;            |
|        |               | otherwise, OUT = 0.      |

#### 12.5.2.4 Equal To Or Less Than

Function: To carry out the Equal To Or Less Than operation between two operands. Input:

| Input | Data Type             | Description |
|-------|-----------------------|-------------|
| IN1   | All data types except | Comparend 1 |
|       | string                | Comparana   |
| IN2   | All data types except | Comparend 2 |
|       | string                | Comparand 2 |

Output:

| Output | Data Type     | Description                |
|--------|---------------|----------------------------|
|        |               | If IN1 is equal to or less |
| OUT    | Bit data only | than IN2, then OUT = 1;    |
|        |               | otherwise, OUT = 0.        |

#### 12.5.2.5 Equal To

Function: To carry out the Equal To operation between two operands.

Input:

| Input | Data Type             | Description |
|-------|-----------------------|-------------|
| IN1   | All data types except | Comparend 1 |
|       | string                | Comparand   |
| IN2   | All data types except | Comporend 2 |
|       | string                | Comparand 2 |

Output:

| Output | Data Type     | Description            |
|--------|---------------|------------------------|
|        |               | If IN1is equal to IN2, |
| OUT    | Bit data only | then OUT = 1;          |
|        |               | otherwise, OUT = 0.    |

#### 12.5.2.6 Not Equal To

Function: To carry out the Not Equal To operation between two operands. Input:

| Input | Data Type             | Description |
|-------|-----------------------|-------------|
| IN1   | All data types except | Comparend 1 |
|       | string                | Comparana   |
| INIO  | All data types except | Compored 2  |
| IINZ  | string                | Comparand 2 |

Output:

| Output | Data Type     | Description                 |  |  |
|--------|---------------|-----------------------------|--|--|
|        |               | If IN1 is not equal to IN2, |  |  |
| OUT    | Bit data only | then OUT = 1;               |  |  |
|        |               | otherwise, OUT = 0.         |  |  |

#### 12.5.3 Type Conversion Function Blocks

Function: OUT = IN

If the OUT and IN data are of the same type, the data value will be copied directly; otherwise, the data type conversion will be required between the OUT and IN data. For example, to convert the int data to the float data.

Input:

| Input Data Type Des | scription |
|---------------------|-----------|
|---------------------|-----------|

| Input | Data Type      | Description |
|-------|----------------|-------------|
| IN1   | All data types |             |

#### Output:

| Output | Data Type      | Description |
|--------|----------------|-------------|
| OUT    | All data types |             |

Note: The data type conversion might affect the data accuracy; for example, when a float data is converted to an int data. For the string data, copying among the string data is allowed. However, it is not allowed to convert the string data to other types of data; for example, a string data cannot be converted to an int or float data.

#### 12.5.4 Linear Conversion Function Blocks

Function: To implement the linear conversion between the input IN and the output OUT. The data range for IN is MININ - MAXIN, and the corresponding data range for OUT is MINOUT – MAXOUT.

| In | nı |     |
|----|----|-----|
|    | μι | лι. |

| Input  | Data Type |      |       | •      | Description        |       |
|--------|-----------|------|-------|--------|--------------------|-------|
| INI    | All       | data | types | except |                    |       |
| IIN    | strir     | ng   |       |        |                    |       |
| MININI | All       | data | types | except | Minimum            | value |
| MIININ | strir     | ng   |       |        | allowed for input  |       |
|        | All       | data | types | except | Maximum            | value |
| MAXIN  | strir     | ng   |       |        | allowed for input  |       |
|        | All       | data | types | except | Minimum            | value |
| MINOUT | strir     | ng   |       |        | allowed for output |       |
|        | All       | data | types | except | Maximum            | value |
| MAXOUT | strir     | ng   |       |        | allowed for output |       |

Output:

| Output | Data Type                    | Description                                                      |
|--------|------------------------------|------------------------------------------------------------------|
| OUT    | All data types except string | OUT = (IN – MININ)/<br>(MAXIN-MININ)*(MAXOUT-MINOUT) +<br>MINOUT |

#### 12.5.5 Logic Function Blocks

#### 12.5.5.1 Logical AND

Function: To carry out the Logical AND operation between two operands. Input:

| Input | Data Type     | Description |
|-------|---------------|-------------|
| IN1   | Bit data only |             |
| IN2   | Bit data only |             |

Output:

| Output | Data Type     | Description           |  |
|--------|---------------|-----------------------|--|
|        | Rit data only | Result of the Logical |  |
| 001    | Bit data only | AND operation         |  |

#### 12.5.5.2 Logical OR

Function: To carry out the Logical OR operation between two operands. Input:

| Input | Data Type     | Description |
|-------|---------------|-------------|
| IN1   | Bit data only |             |
| IN2   | Bit data only |             |

Output:

| Output            | Data Type                | Description |
|-------------------|--------------------------|-------------|
| OUT Bit data only | Result of the Logical OR |             |
|                   | Bit data only            | operation   |

#### 12.5.5.3 Logical Exclusive OR

Function: To carry out the Logical Exclsive OR operation between two operands. Input:

| Input  | Data Type     | Description           |
|--------|---------------|-----------------------|
| IN1    | Bit data only |                       |
| IN2    | Bit data only |                       |
|        | Output:       |                       |
| Output | Data Type     | Description           |
| OUT    | Bit data only | Result of the Logical |

Bit data only

Exclusive OR operation

#### 12.5.5.4 Logical NOT

Function: To carry out the Logical NOT operation between two operands. Input:

| Input | Data Type     | Description |
|-------|---------------|-------------|
| IN1   | Bit data only |             |

Output:

| Output | Data Type     | Description           |
|--------|---------------|-----------------------|
| OUT    | Bit data only | Result of the Logical |
|        |               | NOT operation         |

#### 12.5.6 PID Function Blocks

Regarding process control, the PID controller (also known as PID regulators), which controls according to the percentage of deviation (P), Integral (I) and differential (D) control, is the most widely used as a automatic controller. It has the following advantages:

- Simple working principles •
- Easy to realize
- Widely applicable
- Control parameters independent of each other
- Selection of relatively simple parameters

Besides, in theory the PID controller is proved the best control system for the typical process control objects, First-Order Plus Dead-Time and Second-Order Plus Dead-Time. During the past 20 plus years, there came out some complicated control algorithms which

can only be realized on the computer. However, at present, the PID controller is still the most widely used control algorithm even in process computer control.

| Input  | Data Type                    | Description                                                                                                                                                         |  |
|--------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SP     | All data types except string | Setpoint                                                                                                                                                            |  |
| PV     | All data types except string | Process variable                                                                                                                                                    |  |
| AV     | All data types except string | Output value of the PID algorithm                                                                                                                                   |  |
| MAXOUT | All data types except string | Maximum value allowed for the output                                                                                                                                |  |
| MINOUT | All data types except string | Minimum value allowed for the output                                                                                                                                |  |
| M∨     | All data types except string | Output value of the<br>manipulated variable.<br>When AM=1, then<br>AV=MV.                                                                                           |  |
| КР     | All data types except string | Proportional coefficient                                                                                                                                            |  |
| ті     | All data types except string | Integral time constant<br>(unit: s)                                                                                                                                 |  |
| TD     | All data types except string | Derivative time constant<br>(unit: s)                                                                                                                               |  |
| IS     | All data types except string | Deviation integral value<br>(namely, cumulative<br>deviation)                                                                                                       |  |
| AM     | Bit variables                | <ul> <li>Manual manipulation</li> <li>flag.</li> <li>When AM=1, the manipulation will be manual.</li> <li>When AM=0, the manipulation will be automatic.</li> </ul> |  |

Input:

| PN: | Bit variables | • | When PN=1, it          |
|-----|---------------|---|------------------------|
|     |               |   | indicates the positive |
|     |               |   | action.                |
|     |               | • | When PN=0, it          |
|     |               |   | indicates the          |
|     |               |   | negative action.       |

Output:

| Output | Data Type             | Description              |  |
|--------|-----------------------|--------------------------|--|
| ۵\/    | All data types except |                          |  |
| AV     | string                |                          |  |
|        |                       | Deviation integral value |  |
| IS     | All data types except | (namely, cumulative      |  |
|        | sung                  | deviation)               |  |

Execution Function: To execute the PID algorithm.

Note: The PID algorithm provides bumpless switch between the automatic and manual PID controls. Some variables, such as AV and MV, are not only input variables but also output variables.

The PID controller carries out the PID algorithm through the setpoint (SP) and the process variable. The PID control loop works in two modes, MAN and AUT. In the MAN mode, the PID control loop works as a manual regulator; in the AUT mode, the PID control loop carries out the PID algorithm automatically. The SP can be defined by the operator.

When the PID control loop works in the MAN mode, the SP picks up the automatic tracking function equal to PV, facilitating the bumpless switch from the MAN mode to the AUT mode.

1. Calculate the PID control output

Proportional Term = Proportion \* (Current Deviation – Last Deviation)

Integral Term = Proportion \* Deviation \* Collection Cycle / integral time constant

Differential Term = Proportion \* differentiating time constant \* (Current Deviation - 2\*Last Deviation + Last Two Deviations)/Collection Cycle.

- If it is a positive action, then Output = Last Output + Proportional Term + Integral Term
   + Differential Term.
- If it is a negative action, then Output = Last Output Proportional Term Integral Term
   Differential Term.

Judge whether the output and deviation exceed the preset limit as follows. If so,

process it accordingly.

$$\Delta U_{i} = K_{i} \left[ e_{i} - e_{i-1} + \frac{T}{T_{i}} e_{i} + \frac{T_{i}}{T} (e_{i} - 2e_{i-1} + e_{i-2}) \right]$$

#### 2. Select PID parameters

The setting of the parameters for the digital PID regulator is similar to that for the analog PID regulator. Decide what parameters to select for the regulator based on the requirements of process on the control performance. The impact of each parameter on the system performance is briefly described below:

• Impact of Proportional Coefficient (P) on the System Performance

With the increase of the proportional coefficient, the system reacts more sensitively and with faster speed and less steady-state error. However, too much increase of the P value will result in more number of vibrations and longer regulating time.

If the P value is too big, the system will become unstable; if it is too small, the system performance will become slow.

The P value can be negative, mainly determined by the actuator, sensor, and the characteristics of the conrol object. If the P value has an incorrect symbol, the status of the object (indicated by the PV value) will become further and further away from the target control state (indicated by the SP value). In this case, you will need to change the symbol of the P value to the opposite.

- Impact of Integral Control on the System Performance
   The integral control will reduce the system stability. The smaller the I value is, the stronger the integral control, and then the unstabler the system. However, it eliminates the steady-state error and enhances the system cotrol accuracy.
- Impact of Differential Control on the System Performance
   The differential control improves the dynamic characteristics. However, the bigger the
   D value is, the bigger the overshoot, and thus the shorter the regulating time; the
   smaller the D value, the bigger the overshoot as well, and the longer the regulating
   time. Only when the D value is appropriate, the overshoot is small, and thus reducing
   the regulating tme.

#### 12.5.7 First-Order Model Function Blocks

Function: To configure a model object for the first-order system.

Input:

| Input Data Type Description |  |
|-----------------------------|--|
|-----------------------------|--|

| Input  | Data Type                    | Description               |
|--------|------------------------------|---------------------------|
| IN     | All data types except string | Input value               |
| KP     | All data types except string | Amplification coefficient |
| Т      | All data types except string | Time constant (unit: s)   |
| MAXOUT | All data types except string | Maximum output value      |
| MINOUT | All data types except string | Minimum output value      |

Output:

| Output | Data Type             | Description  |
|--------|-----------------------|--------------|
| OUT    | All data types except | Output value |
|        | string                |              |

#### 12.5.8 Differential Function Blocks

Function: To realize the differential function. The differential of OUT equals to that of IN.

| Input | Data Type             | Description    |
|-------|-----------------------|----------------|
| IN    | All data types except | Input variable |
|       | string                | input variable |

Output:

| Output | Data Type                    | Description  |
|--------|------------------------------|--------------|
| OUT    | All data types except string | Output value |

#### 12.5.9 Integral Function Blocks

Function: To realize the integral function. The integral of OUT equals to that of IN. Input:

| Input | Data Type                    | Description                                                                                                                                                                                                                                                                         |  |  |
|-------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| IN    | All data types except string | Input variable                                                                                                                                                                                                                                                                      |  |  |
| SW    | Int variable                 | <ul> <li>Defines how the integral function works, as follows:</li> <li>When SW=0, the integral result is reset, namely, OUT=0.</li> <li>When SW=1, the integral becomes cumulative.</li> <li>When SW=2, the integral function stops while the integral result is stored.</li> </ul> |  |  |

Output:

| Output | Data Type                    | Description  |
|--------|------------------------------|--------------|
| OUT    | All data types except string | Output value |

# 12.6 System Variables for Function Blocks

| Database<br>Name | Variable Name | Data<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                  |
|------------------|---------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| system           | FbdEnable     | bit          | 1                | <ul> <li>When the variable value<br/>is 1, the function block is<br/>enabled.</li> <li>When the variable value<br/>is 0, the function block is<br/>disabled. In other words,<br/>none of the configured<br/>function blocks will be<br/>executed.</li> </ul> |
|                  | FbdCycleTime  | ulong        | 100              | Defines the cycle in which the function blocks are executed (unit: ms).                                                                                                                                                                                      |
|                  | FbdHeartbeat  | bit          |                  | Defines the heartbeat of the<br>function blocks during the<br>operation.<br>The value of this variable                                                                                                                                                       |

| Database | Variable Name | Data | Default | Description                  |
|----------|---------------|------|---------|------------------------------|
| Name     |               | Туре | Value   |                              |
|          |               |      |         | switches between 0 and 1     |
|          |               |      |         | repeatedly during the        |
|          |               |      |         | operation of the function    |
|          |               |      |         | blocks. The value switches   |
|          |               |      |         | once all function blocks are |
|          |               |      |         | executed.                    |
# **Chapter 13 Ladder Diagram Programming**

# 13.1 Overview

To better satisfy the needs of industrial control, the EASY HMI integrates as well the soft PLC function besides the cofiguration functions provided by the commonly-used configuration software. With the soft PLC function, the EASY HMI is capable of realizing some functions which can only be implemented on the PLC. Therefore, in some cases, the EASY HMI can replace the PLC; for example, you can directly connect to IO modules and implement the control over these modules completely from the HMI.

The soft PLC function of the EASY HMI is implemented through the ladder diagram programming, which is widely-used in the PLC industry at present. Because of this, if you are an engineer or technician familiar with the PLC, you can start working with the EASY HMI right away without any special technical training.

During the ladder diagram programming, you can not only use directly the various ladder diagram components provided by the system, but also access all the data in the real-time database. Therefore, it can be concluded that the EASY HMI is more preferable compared with the traditional PLC regarding rapidly configuring powerful control projects.

# 13.2 Creating a Ladder Diagram Program

# 13.2.1 Overview

To create a ladder diagram program, do as follows:

Double-click on the Ladder Diagram node in the navigator on the left side of the **Project Manager** window.

You will see the Ladder Diagram Editor window as shown in Figure 13.1.

| 曼 ladder. xml-send                              |                                         |     |             |
|-------------------------------------------------|-----------------------------------------|-----|-------------|
| File( <u>E)</u> Edit( <u>E</u> ) View( <u>\</u> | /) Monitor( <u>M</u> ) Help( <u>H</u> ) |     |             |
|                                                 | 4) 🜔 🖉 🚔 🛈 🚬                            |     |             |
| PLC Program ×                                   |                                         |     | inumunumunu |
| - Program                                       |                                         |     | 📃 🕨 HF      |
| H send                                          |                                         | TON | ++ ++       |
|                                                 |                                         |     | <u> </u>    |
|                                                 |                                         |     |             |
|                                                 |                                         | R   | 47 43       |
|                                                 |                                         |     | -tt> I      |
|                                                 |                                         |     | M D         |
|                                                 |                                         |     | = →         |
|                                                 |                                         | R   |             |
|                                                 |                                         |     | FBD         |
|                                                 |                                         |     |             |
|                                                 |                                         |     |             |
|                                                 |                                         |     |             |
|                                                 |                                         |     | ×           |
| Poodu                                           |                                         |     |             |
| Reauy                                           |                                         |     | 10,2. NUF   |

Figure 13.1

The ladder diagram programming is organized hierachically in two levels, program segments and program blocks. A ladder diagram program can be composed of one or more program segments, and a program segment can be composed of one or more program blocks. You can realize the ladder diagram logic in each program block.

The ladder diagram is designed to be composed of several program segments, because in this way it allows you to specify an operational variable for each program segment to control whether to run this program segment.

The following sections describe in details how to create program segments and program blocks.

# 13.2.2 Create a Program Segment

To create a program segment, do as follows:

In the Ladder Diagram Editor window as shown in Figure 13.1, select
 Program on the left side and right-click on it.

You will see a right-click menu as shown in Figure 13.2.



2) Select Create a Program Segment, and you will see a dialog box as shown

| Section Parameter | ×        |
|-------------------|----------|
| Setting           |          |
| Section<br>Name:  |          |
| Run<br>variable:  | 2        |
| V OK              | X Cancel |

in Figure 13.3.

Figure 13.3

The parameters in Figure 13.3 are described as follows:

- **Program Segment Name**: defines the name of the program segment to be created.
- **Operational Variable**: defines whether to run this program segment. This operational variable is an int variable. When the value is 0, the program segment will not run; when the value is not 0, the program segment will run. If no operational variable is defined, then the program segment will run by default.

# 13.2.3 Creating a Program Block

After you create a program segment, you can add program blocks for it as follows:

 In the Ladder Diagram Editor window as shown in Figure 13.1, select the program segment for which you want to add a program block, and right-click on it.

You will see a right-click men as shown in Figure 13.4.

| Insert Section    |
|-------------------|
| Insert Rung       |
| Delete Section    |
| Delete Rung       |
| Move to End       |
| Move to Forefront |
| Move to Front     |
| Move to Offside   |
| Property          |



2) Select **Add a Program Block**, and you will see a dialog box as shown in Figure 13.5.

| Setting Rung  | × |
|---------------|---|
| Setting       |   |
| Rung Name:    | - |
|               |   |
| 🚽 OK 🎽 Cancel |   |
|               |   |



3) Set the name for the program block, and click on **OK**.

# 13.2.4 Deleting a Program Segment

To delete an existing program segment, do as follows:

 In the Ladder Diagram Editor window as shown in Figure 13.1, select the program segment to be deleted on the left side of the window, and right-click on it.

You will see a right-click menu as shown in Figure 13.6.





 Select Delete a Program Segment, and the selected program segment will be deleted.

# 13.2.5 Deleting a Program Block

To delete an existing program block, do as follows:

 In the Ladder Diagram Editor window as shown in Figure 13.1, select the program block to be deleted on the left side of the window, and right-click on it.

You will see a right-click menu as shown in Figure 13.7.





2) Select Delete a Program Block, and the selected program block will be

deleted.

### 13.2.6 Moving a Program Block

Program blocks in the ladder diagram are executed from top to bottom in the same sequence as they are sorted under the **Program Segment** node. You can change the execution sequence by dragging the program block to a different location under the **Program Segment** node.

#### 13.2.6.1 To the End

You can move a program block to the most bottom of the list under the **Program Segment** node.

Do as follows:

- In the Ladder Diagram Editor window as shown in Figure 13.1, select the program block to be moved on the left side of the window, and right-click on it.
- 2) On the right-click menu displayed, select **Move to The End**.

### 13.2.6.2 To the Beginning

You can move a program block to the beginning of the list under the **Program Segment** node.

Do as follows:

- In the Ladder Diagram Editor window as shown in Figure 13.1, select the program block to be moved on the left side of the window, and right-click on it.
- 2) On the right-click menu displayed, select **Move to The Beginning**.

#### 13.2.6.3 To the Previous Layer

You can move a program block to the previous layer within the same **Program Segment** node.

Do as follows:

- In the Ladder Diagram Editor window as shown in Figure 13.1, select the program block to be moved on the left side of the window, and right-click on it.
- 2) On the right-click menu displayed, select **Move to The Previous Layer**.

### 13.2.6.4 To the Next Layer

You can move a program block to the next layer within the same **Program Segment** node.

Do as follows:

- In the Ladder Diagram Editor window as shown in Figure 13.1, select the program block to be moved on the left side of the window, and right-click on it.
- 2) On the right-click menu displayed, select **Move to The Next Layer**.

13.2.7 Editting a Ladder Diagram Program

You can edit the ladder dialgram programming for a defined program block. Do as follows:

- In the Ladder Diagram Editor window as shown in Figure 13.1, double-click on the program block to be editted on the left side of the window.
   You can see a rectanglar grid on the right side of the window.
- Drag and put ladder diagram components inside the grid according to your needs.

Each component takes only one column. Some components can spread across a few rows according to the needs.

# 13.2.7.1 Adding a Component

On the right side of the **Ladder Diagram Editor** window as shown in Figure 13.1 is located a tool set, which lists all ladder diagram components supported by EASY, as shown in Figure 13.8.

| ĸ     | 41-           |   |
|-------|---------------|---|
| ₩     | -₩            |   |
| ₩     | -             |   |
| - I   | $\leftarrow$  |   |
| -{/}- | -(S)-         |   |
| -(R)- | T             |   |
| M     | $\square$     |   |
| Ξ     | $\rightarrow$ | ŀ |
| FBD   |               |   |

Figure 13.8

To add a component, do as follows:

- 1) Select the component control from the tool set.
- 2) Drag and put this component in the appropriate grid.

Depending on the function of the component, some components can only be

placed in the last column of the grid (for example, open loops  $\bigcirc$ ), while some others are not allowed to be placed in the last column of the grid (for example,

normally open contacts +).

Note: After adding a component, you must configure the properties of this component before using it.

#### 13.2.7.2 Editting a Component

After adding a component, you need to edit the properties of this component.

Do as follows:

Double-click on the component for which you want to edit the properties or right-click on the component, and then select **Properties**, as shown in Figure 13.9.



Figure 13.9

The **Property Setting** dialog box displayed varies from component to component. For normally open contacts, the **Property Setting** dialog box is as shown in Figure 13.10.

| Variable Setting                 | ×      |
|----------------------------------|--------|
| Setting<br>Variable: test1.data1 | 2      |
|                                  |        |
| ОК                               | Cancel |
| Figure 13.10                     |        |

### 13.2.7.3 Deleting a Component

To delete a component, do as follows:

- 1) Select the component to be deleted.
- Press the DEL on the keyboard, or right-click on the component and select Delete, as shown in Figure 13.11.



# 13.2.7.4 Inserting a Row

You can insert a new row before a selected row.

Do as follows:

- 1) Select a row and then right-click on it.
- 2) Select Insert a Row on the right-click menu.

To insert a row before the last row, you need to select Add a Row.

# 13.2.7.5 Deleting a Row

You can select a row and delete it, on the condition that the selected row does not have any components attached.

To delete a row, do as follows:

- 1) Select a row and right-click on it.
- 2) Select **Delete a Row** on the right-click menu.

### 13.2.7.6 Inserting a Column

You can insert a column before the selected column.

Do as follows:

- 1) Select a column ad right-click on it.
- 2) Select Insert a Column.

### 13.2.7.7 Deleting a Column

You can select a column and delete it, on the condition that the selected column does not have components attached.

Do as follows:

- 1) Select a column and right-click on it.
- 2) Select **Delete a Column** on the right-click menu.

# 13.2.7.8 Adding a Row at the End

You can add a row before the last row.

Do as follows:

- 1) Right-click anywhere in the grid.
- 2) Select Add a Row on the right-click menu.

# 13.3 Components in the Ladder Diagram

# 13.3.1 Connecting Line

The connecting line is for connecting components of the ladder diagram. At present, the system has three types of connecting lines, as described below:

Horizontal Lines : Horizontally connecting the components. These lines

occupy only one cell.

- Vertical Lines .: Vertically connecting the components.
- Horizontal Connect-To Lines Horizontally connecting the components. These lines may occupy multiple cells, namely, all the cells between the current cursor location and the next component.

# 13.3.2 Digital Input

Digital input components include four types, Normally Open Contacts III, Normally

Closed Contacts  $\checkmark$ , Rising Edges  $\checkmark$ , Falling Edges  $\checkmark$ . None of these four types of components are allowed to be placed in the last column of the grid.

After you add a digital input component in the grid, double-click on the component to configure the associated variables in the dialog box as shown in 13.12.

| Variable Sett           | ing          | ×      |
|-------------------------|--------------|--------|
| Setting<br>Variable: [1 | testi. datai |        |
| ок                      |              | Cancel |

Figure 13.12

The functions of and instructions for these four types of components are described in details in the table below.

| Component                      | Function                                                                                                                                                                                                                              | Special Instruction                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normally<br>Open Contact<br>내는 | <ul> <li>When the value of the variable to which this component is associated is 0, the contact state is 0.</li> <li>When the value of the associated variable is non-0, the contact state is 1, namely, OUT=IN &amp; VAL.</li> </ul> | <ul> <li>If no associated variable is specified, the output is always equal to the input, namely, OUT=IN.</li> <li>If you set the associated variable to the constant 1, the output is always equal to the input, namely, OUT=IN.</li> <li>If you set the associated variable to the constant 0, then the output is always 0, namely, OUT=0.</li> </ul> |
| Normally                       | • When the value of the variable                                                                                                                                                                                                      | • If no associated variable is specified,                                                                                                                                                                                                                                                                                                               |

| Closed       | to which this component is         | the output is always equal to the                          |
|--------------|------------------------------------|------------------------------------------------------------|
|              | associated is 0, the contact       | opposite of the input, namely,                             |
|              | state is 1.                        | OUT=!IN.                                                   |
|              | When the value of the              | • If you set the associated variable to                    |
|              | associated variable is non-0,      | the constant 1, the output is always                       |
|              | the contact state is 0, namely,    | 0, namely, OUT=0.                                          |
|              | OUT=IN & !VAL.                     | • If you set the associated variable to                    |
|              |                                    | the constant 0, the output is always                       |
|              |                                    | equal to the input, namely, OUT=IN.                        |
|              |                                    | <ul> <li>If no associated variable is specified</li> </ul> |
|              | When the value of the associated   | the output is 1 when the input                             |
|              |                                    |                                                            |
| Rising Edge  | variable changes from 0 to 1, the  | changes from 0 to 1, namely,                               |
| <b>AL</b>    | contact state is 1; otherwise, the | OUT=IN.                                                    |
| T            | contact state is 0, namely, OUT=IN | • If the associated variable is set to                     |
|              | & VAL.                             | the constant 1 $ ho$ r 0, the output is                    |
|              |                                    | always 0, namely, OUT=0.                                   |
|              | When the value of the associated   | • If no associated variable is specified,                  |
|              | variable changes from 1 to 0, the  | the output is 1 when the input                             |
| Falling Edge | contact state is 1; otherwise, the | changes from 1 to <sup>♥</sup> 0, namely,                  |
|              | contact state is 0, namely, OUT=IN | OUT=IN.                                                    |
| 111          | & VAL                              | • If the associated variable is set to                     |
|              |                                    | the constant 1 or 0, the output is                         |
|              |                                    | always 0, namely, OUT=0.                                   |
| 1            |                                    |                                                            |

(Note: In the table above, IN stands for the component input, VAL for the value of the associated variable, and OUT for the component output.)

# 13.3.3 Digital Output

Digital output components include four types, Open Loops (), Closed Loops

Setting  $\stackrel{(\begin{subarray}{c})}{\Longrightarrow}$ , and Reset  $\stackrel{(\begin{subarray}{c})}{\Longrightarrow}$ . These four types of components are only allowed to be placed in the last column of the grid.

After you add a digital output component in the grid, double-click on the component to configure the associated variables in the dialog box as shown in Figure 13.13.

| Variable Setting       | $\mathbf{X}$ |
|------------------------|--------------|
| -Setting-              |              |
| W 111 tosti dotol      |              |
| Variable: [testi.datai | <u>~~</u>    |
|                        |              |
| <b>у</b> ок            | 🌋 Cancel     |
|                        |              |

Figure 13.13

The functions of and instructions for these four types of components are described in details in the table below.

| Component   | Function                                                                     |
|-------------|------------------------------------------------------------------------------|
| Open Loop   | • When the loop input is 0, the value of the varialbe to which the loop is   |
| 41          | associated is 0.                                                             |
| 17          | • When the loop input is non-0, the value of the associated variable is 1.   |
| Closed Loop | • When the loop input is 0, the value of the associated variable is 1.       |
| -47-        | • When the loop input is non-0, the value of the associated variable is 0.   |
|             | • When the loop input is non-0, the value of the associated variable is 1.   |
| Setting     | • When the loop input is 0, the value of the associated variable remains the |
|             | same.                                                                        |
|             | • When the loop input is non-0, the value of the associated variable is 0.   |
| Reset 🕀     | • When the loop input is 0, the value of the associated variable remains the |
|             | same.                                                                        |

# 13.3.4 Timer

The Timer component is not allowed to be placed in the last column of the grid. After you add a Timer component, the Timer component will be displayed in a cell of the grid, as shown in Figure 13.14.



I stands for Input. When the value of I is 1, the timer starts running; when the value of I is 0, the timer stops.

**D** stands for Done, which means the preset time for starting the timer is reached.

**R** stands for Running, which means the timer is running.

The functions of the timer are described as follows:

- When the value of I is 1, the timer starts running. During the timing period, the value of D is 0, and the value of R is 1. Once the timing period runs out, the value of D becomes 1, and the value of R becomes 0.
- When the value of I is 0, the timer stops running. In this case, the status of the timer, whether it is **Not Started**, **Started**, or **Stopped**, makes no difference. The values of both **D** and **R** are 0 as long as the value of I is 0.

Double-click on the Timer component, and you can configure its properties in the dialog box as shown in Figure 13.15.

| Timing Module             | Parameter Setting | ×            |
|---------------------------|-------------------|--------------|
| Setting                   |                   |              |
| Initial Time<br>Variable: | 10000             | 2            |
| Run Time<br>Variable:     | test1. int3       | $\mathbf{P}$ |
| Туре:                     | increase 💌        |              |
| <b>2</b> 0                | K Cancel          |              |

Figure 13.15

The configuration parameters in Figure 13.15 are described as follows:

- Initial Time Variable: defines the time when the timer starts running.
   You can either enter an int constant, or associate it to a data in the real-time database.
- Runtime Variable: reflects the running of the timer.
  - If the timer is an incremental timer, you can observe that the value of this variable increases gradually from 0 to the value defined for Initial Time Variable during the running of the timer. The timer stops running once the value defined for Initial Time Variable is reached.
  - If the timer is a decremental timer, you can observe that the value of this variable decreases gradually from the value defined for Initial Time Variable to 0. The timer stops running once the value reaches 0. You do not need to specify this variable if you do not need to know the running status of the timer.
- **Type**: Two types are available for selection, **Incremental** and **Decremental**. For more details, see the description for **Running Time Variable**.

# 13.3.5 Single-Shot Trigger

Single-shot triggers are not allowed to be placed in the last column of the grid. After you add a single-shot trigger component, the component will be shown in a cell of the grid, as shown in Figure 13.16.



I stands for the input of the single-shot trigger. When the value of I is 1, the single-shot trigger starts running; when the value is 0, the trigger stops.

**R** stands for Running, which means the single-shot trigger is running.

The functions of the single-shot trigger are described as follows:

- At the beginning of the operation of the ladder diagram, the single-shot trigger has not started running yet, and thus the value of R is 0.
- During the operation of the ladder diagram, the single-shot trigger starts running when a rising edge (from 0 to 1) occurs to I, and the value of R becomes 1. The trigger will keep running until the preset running time runs out, regardless of the changes for I. Once the preset running time runs out, the value of R becomes 0.
- 3. When the operation of the single-shot trigger is complete, the single-shot trigger will start again when a rising edge (from 0 to 1) occurs to **I**, and step 2 will be repeated.

Double-click on the single-shot trigger component, and you can configure its properties in the dialog box as shown in Figure 13.17.

| Timing Module                         | Parameter | Setting  | × |
|---------------------------------------|-----------|----------|---|
| -Setting<br>Initial Time<br>Variable: |           | <u> </u> | 2 |
| Run Time<br>Variable:                 |           | <u> </u> |   |
| Туре:                                 |           | <b>V</b> |   |
| 1                                     | ж         | X Cancel |   |

#### Figure 13.17

The configuration parameters in Figure 13.17 are described as follows:

- Initial Time Variable: defines the time when the single-shot trigger starts running. You can either enter an Int constant, or associate it to a data in the real-time database.
- Runtime Variable: reflects the running of the single-shot trigger.

During the running of the single-shot trigger, you can observe that the value of this variable increases gradually from 0 to the value defined for **Initial Time Variable**. The trigger stops running once the value defined for **Initial Time Variable** is reached.

You do not need to specify this variable if you do not need to know the running status of the single-shot trigger.

• **Type**: This parameter is meaningless to the single-shot trigger.

# 13.3.6 Comparison Components

Comparison components D are not allowed to be placed in the last column of the

grid.

After you add a comparison component, double-click on it, and you can configure its properties in the dialog box as shown in Figure 13.18.

| Setting E                      | xpression                | × |
|--------------------------------|--------------------------|---|
| Setting<br>Expression<br>Type: | integer 💌                |   |
| Expression                     | n: test1.int4>test1.int5 |   |
|                                | OK X Cancel              |   |

Figure 13.18

The parameters in Figure 13.18 are described as follows:

- **Expression Type**: Two types of expressions are available, Int and Float.
- Expression: You can enter the expression for comparison or judgement.
   Follow the rules below when forming an expression:
  - 1. Use the following operators:
    - >: for More Than
    - <: for Less Than</p>

- ♦ = or ==: for Equal To
- <>: for Not Equal To
- ♦ ( and ): for brackets
- 2. Do not use spaces in the expression.

3. You can include the variables from the real-time database in the expression, following the reference rule **Database Name.Real-Time Data Name**. Please be noted that the symbol \$ is not included.

An example of the expression can be test1.int4<>((test1.int5+5)\*3).

For comparison components, the output is 0 when the input is 0. When the input is 1, the system will carry out the calculation according to the expression: if the result is TRUE, the output is 1; otherwise, the output is 0.

# 13.3.7 Assignment Components

Assignment components e are only allowed to be placed in the last column of the grid. You can define the assignment operation for these components.

After you add an assignment component in the grid, double-click on it, and you can configure its properties in the dialog box as shown in Figure 13.19.

| Setting Exp                    | pression       |          | × |
|--------------------------------|----------------|----------|---|
| Setting<br>Expression<br>Type: | integer        | <b>_</b> |   |
| Expression:                    | test1.int6=100 |          |   |
|                                | 🖋 ок           | Cancel   |   |

Figure 13.19

The configuration parameters in Figure 13.19 are described as follows:

- **Expression Type**: Two types of expressions are available, Int and Float.
- **Expression**: defines the expression for assignment operation. Follow the rules below when forming an expression:

1. Do not use spaces in the expression.

2. You can include the variables from the real-time database in the expression, following the reference rule **Database Name.Real-Time Data Name**. Please be noted that the symbol \$ is not included.

#### An example of the expression can be **test1.int6=100**.

For assignment components, when the input is 0, the assignment operation will not be carried out; when the input is 1, the assignment operation is carried out according to the expression.

#### 13.3.8 Function Block Components

Besides the basic ladder diagram components, EASY provides function block components as well.

On the right side of the Ladder Diagram Editor window as shown in Figure 13.1, click on the Function Block button in the tool set, and you can see a Function Block List dialog box as shown in Figure 13.20.

| Arithmetic<br>Addition  |   |
|-------------------------|---|
| - Arithmetic - Addition |   |
| - Addition              |   |
|                         |   |
| Subtration              |   |
| Multiplication          |   |
| JIVISION                |   |
| Lompare                 |   |
| More                    |   |
| More And equal          |   |
| Less                    |   |
| Less And equal          |   |
| Equal                   |   |
| Not equal               |   |
| + Convert               |   |
| H-Logic                 |   |
| + Advanced Ualculation  |   |
| +-Control Algorithm     |   |
| - Timer                 |   |
| Delay Timer (Dec)       |   |
| Jelay Timer (Inc)       |   |
| Monostable              | - |
| - fulse                 |   |
| j Square wave           |   |
|                         |   |
| OK Cancel               |   |
| Calcer                  |   |

Figure 13.20

As dislayed in Figure 13.20, function block components fall into seven categories according to functions, including Arithmetics, Comparison, Conversion, Logical Qubit Operation, Advanced Computing, Control Algorithm, and Timer. Each category is composed of several components; for example, the Arithmetics category has components such as Addition and Subtraction. To select a component, you just need to click on it and then click on **OK**. And then you can drag and place it in your target cell of the grid.

After you add a function block component, you need to configure its properties. Take the Addition component as an example. Double-click on the component, and you can see a dialog box as shown in Figure 12.21.

| 劝 | 能块配置              |                    |      | × |
|---|-------------------|--------------------|------|---|
|   | 功能块参数列表 ——        |                    |      |   |
|   | 参数名               | 参数说明               | 参数值  |   |
|   | IN1<br>IN2<br>OVT | 操作数1<br>操作数2<br>输出 |      |   |
|   | <                 |                    |      | > |
|   | 参数名:              |                    |      |   |
|   | ×.                | 确定                 | ₩ 取消 |   |



To configure the parameters for the component properties, do as follows:

- Select a parameter from the Function Block Parameter List in Figure 13.21. The name of the selected parameter will be shown in the text box behind Parameter Name.
- 2) In the **Parameter Value** text box, enter your specified value, or click on the

icon  $\checkmark$  on the right side to select a data from the real-time database.

- 3) Click on the **Settings** button, and complete all the related settings.
- 4) Click on **OK** to save all the parameter settings.

#### 13.3.8.1 Arithmetics

Arithmetics function blocks are composed of four types of components, including Addition, Subtraction, Multiplication, and Division, which carry out specifically the addition, subtraction, multiplication, and division operations. These components are only allowed to be placed in the last column of the grid.

Take the Addition component for example. After you add an Addition component, the component will be displayed in the grid as shown in Figure 13.22.



Figure 13.22

**EN** stands for Enable. Only when the value of **EN** is 1, the arithmetic operation of the component will be executed; when the value of **EN** is 0, the operation will not be executed.

To configure the properties of the component, double-click on the component, and you will see a dialog box as shown in Figure 13.23.

| 劝      | 能共配置              |                    |      | ×            |
|--------|-------------------|--------------------|------|--------------|
| _<br>۲ | 功能块参数列表 —         |                    |      |              |
|        | 参数名               | 参数说明               | 参数值  |              |
|        | IN1<br>IN2<br>OVT | 操作数1<br>操作数2<br>输出 |      |              |
|        | <                 |                    |      | >            |
|        | 参数名:              |                    |      | 设置           |
|        | 参数值:              |                    |      | $\mathbf{P}$ |
|        |                   | 确定                 | 🦹 取消 |              |



The parameters listed in Figure 13.23 are described as follows:

- **IN1**: the first operand of the arithmetic operation. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **IN2**: the second operand of the arithmetic operation. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **OUT**: the result of the arithmetic operation. It must be a data in the real-time database. When the value of **EN** is 1, the arithmetic operation will be executed, and the result will be saved into a data in the real-time database.

#### 13.3.8.2 Comparison

Comparision function blocks are composed of six types of components, including Greater Than, Equal To Or Greater Than, Less Than, Equal To Or Less Than, Equal To, and Not Equal To. These components are not allowed to be placed in the last column of the grid.

Take the Greater Than component for example. After you add a Greater Than component, the component will be displayed in the grid, as shown in Figure 13.24.



Figure 13.24

**EN** stands for Enable. Only when the value of **EN** is 1, the comparison operation of the component will be executed, and the output is set based on the comparison result. When the value of **EN** is 0, the comparison operation will not be executed, and the output is always 0.

After you add a comparison component, double-click on it, and you can configure its properties in the dialog box as shown in Figure 13.25.

| Fu         | nction B           | lock     | Configu        | atio   | n |       |      |        | × |
|------------|--------------------|----------|----------------|--------|---|-------|------|--------|---|
| <b>[</b> ] | Function Bl        | ock Pa   | rameter Li:    | st —   |   |       |      |        |   |
|            | parameter          | name     | parameter      | d      |   | param | eter | value  | _ |
|            | IN1<br>IN2         |          | input<br>input | 1<br>2 |   |       |      |        |   |
|            |                    |          |                |        |   |       |      |        |   |
|            |                    |          |                |        |   |       |      |        |   |
|            | <                  |          |                |        |   |       |      |        | > |
|            | parameter<br>name: |          |                |        |   |       |      | Settin | Æ |
| L          | Parameter:         |          |                |        |   |       |      | 4      |   |
|            |                    | <b>√</b> | OK             |        |   | Cance | 1    |        |   |



The confguration parameters in Figure 13.25 are described as follows:

• **IN1**: the first operand of the comparison operation. The value of this parameter can be one of the following:

- Int constant
- Float constant
- Data in the real-time database
- IN2: the second operand of the comparison operation. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database

# 13.3.8.3 Conversion

Conversion function blocks are composed of two types of components, Type Conversion (Assignment) and Linear Conversion. These components are only allowed to be placed in the last column of the grid.

# 13.3.8.3.1 Type Conversion (Assignment)

The Type Conversion (Assignment) component has two parameters, the input parameter **IN** and the output parameter **OUT**. It works to convert the type of **IN** to the same as that of **OUT**. If **IN** and **OUT** are of the same data type, then the data value can be copies directly; otherwise, the data type conversion will be carried out between **OUT** and **IN**, for example, type conversion from Int to Float.

For type conversion, pay attention to the following aspects:

- Type conversion might affect data accurary; for example, when converting a Float data to an Int data.
- For String data, it is copying from the IN string to the OUT string.
- Type conversion is not allowed between a string data and a non-string data.

After you add a type conversion (assignment) component, the component will be displayed in the grid as shown in Figure 13.26.



**EN** stands for Enable. Only when the value of **EN** is 1, the type conversion operation will be executed; when the value of **EN** is 0, the type conversion operation will not be executed.

To configure the properties of the component, double-click on it, and you will see a

dialog box as shown in Figure 13.27.

| 劝      | 能块配置      |      |      | × |
|--------|-----------|------|------|---|
| -<br>۲ | 功能块参数列表—— |      |      |   |
|        | 参数名       | 参数说明 | 参数值  |   |
|        | IN<br>OVT | 输入输出 |      |   |
|        | <         |      | >    |   |
|        | 参数名:      |      | 设置   |   |
|        | 参数值:      |      | P    |   |
|        | <b>√</b>  | 确定   | 🎽 取消 |   |



The configuration parameters are described as follows:

- **IN1**: the data whose type is to be converted. The value of the parameter can be of any data type.
- **OUT**: the result after type conversion. The value of this parameter must be a data in the real-time database.

# 13.3.8.3.2 Linear Conversion

The Linear Conversion component has six parameters, which are **IN**, **MININ**, MAXIN, MINOUT, MAXOUT, and OUT. It works to implement the linear conversion from **IN** to **OUT** (the value range of **IN** is MININ to MAXIN, and the value range of **OUT** is **MINOUT** to **MAXOUT**.

After you add a linear converstion component, the component will be displayed in the grid as shown in Figure 13.28.



Figure 13.28

**EN** stands for Enable. Only when the value of **EN** is 1, the linear conversion operation will be executed; when the value of **EN** is 0, the linear conversion operation will not be

executed.

To configure the properties of the component, double-click on it and you will see a dialog box as shown in Figure 13.29.

| 劝 | 能块配置                                            |                                              |      |                                       |
|---|-------------------------------------------------|----------------------------------------------|------|---------------------------------------|
| Γ | 功能块参数列表——                                       |                                              |      |                                       |
|   | 参数名                                             | 参数说明                                         | 参数值  |                                       |
|   | IN<br>MININ<br>MAXIN<br>MINOUT<br>MAXOUT<br>OUT | 输入<br>输入最小值<br>输入最大值<br>输出最大值<br>输出最大值<br>输出 |      |                                       |
|   | <b>会</b> 数亿: IIAYTY                             |                                              |      | ····································· |
|   | 参数值:                                            |                                              |      |                                       |
|   | V                                               | 确定                                           | 🦹 取消 |                                       |

Figure 13.29

The configuration parameters in Figure 13.29 are described as follows:

- **IN**: the data for which linear conversion is to be implemented. The value of this parameter can be on of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **MININ**: the minimum value of the input range. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **MAXIN**: the maximum value of the input range. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - > Data in the real-time database
- **MINOUT**: the minimum value of the output range. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **MAXOUT**: the maximum value of the output range. The value of this parameter

can be one of the following:

- Int constant
- Float constant
- Data in the real-time database
- **OUT**: the result of the linear conversion. The value of this parameter must be a data in the real-time database.

### 13.3.8.4 Logical Qubit Operation

Logical Qubit Operation function blocks are composed of four types of components, including Logical AND, Logical OR, Logical Exclusive OR, and Logical NOT. They correspond individually to four operations in the C language, which are Bitwise And, Bitwise Or, Bitwise Xor, and Bitwise Not. See below for more details.

• Bitwise And (&): returns the bitwise and of the binary numbers of the two operands involved in the operation.

You can get a 1 only when both binary digits at the same location of the binary number are 1; otherwise, you will get a 0.

For example, "9&5" can be converted to "00001001 (the binary number of 9)&00000101 (the binary number of 5)", and the operation result is "00000001 (the binary number of 1)", namely, "9&5=1".

• Bitwise Or (|): returns the bitwise or of the binary numbers of the two operands involved in the operation.

You can get a 1 as long as one of the binary digits at the same location of the two binary numbers is 1; otherwise, you will get a 0.

For example, "9|5" can be converted to "00001001 (the binary number of 9)|00000101 (the binary number of 5)", and the operation result is "00001101 (the binary number of 13)", namely, "9|5=13".

• Bitwise Xor (^): returns the bitwise Xor of the binary numbers of the two operands involved in the operation.

You can get a 1 when the two binary digits at the same location of the binary number are different from each other; otherwise, you will get a 0.

For example, "9^5" can be converted to "00001001 (the binary number of 9)^00000101 (the binary number of 5)", and the operation result is "00001100 (the binary number of 12)", namely, "9^5=12".

• Bitwise Not (~): returns the bitwise not of each binary digit of the binary number of the operand involved in the operation. In other words, the binary digits which are on will be turned off and those which are off will be turned on.

For example, "~9" can be converted to "~00001001 (the binary number of 9)", and the operation result is "11110110 (the binary number of 246)", namely, "~9=246".

These four types of components are only allowed to be placed in the last column of the grid.

Take the Logical And component for example. After you add a logical AND component, the component will be displayed in the grid as shown in Figure 13.30.



Figure 13.30

**EN** stands for Enable. Only when the value of **EN** is 1, the logical operation of the component will be executed; when the value of **EN** is 0, the operation will not be executed.

To configure the properties of the component, double-click on it, and you will see a dialog box as shown in Figure 13.31.

| 功能块配置             |                    | X                               |
|-------------------|--------------------|---------------------------------|
| 一功能块参数列           | 刘表                 |                                 |
| 参数名               | 3 参数说明             | 参数值                             |
| IN1<br>IN2<br>OUT | 操作数1<br>操作数2<br>输出 | 0x1234<br>0x4321<br>test1.int25 |
| ≪数名: □            | iiil               | >                               |
|                   |                    |                                 |
| 参数值:              |                    | <b>2</b>                        |
| [                 | 🖌 确定               | 🦹 取消                            |

Figure 13.31

The configuration parameters in Figure 13.31 are described as follows:

- **IN1**: the first operand of the logical operation. The value of this parameter can be one of the following:
  - Int constant (If starting with **0x**, it means the input is a hex data; for example, 0x1234.)
  - > Data in the real-time database
- **IN2**: the second operand of the logical operation. This parameter is invalid for the Logical Not component. The value of this parameter can be one of the following:

- Int constant (If starting with **0x**, it means the input is a hex data; for example, 0x1234.)
- Data in the real-time database
- **OUT**: the result of the logical operation. It must be a data in the real-time database. When the value of **EN** is 1, the logical operation will be executed, and the result is saved into a data in the real-time database.

#### 13.3.8.5 Advanced Computing

Advanced Computing function blocks are composed of two types of components, including Differential and Integral components. These components are only allowed to be placed in the last column of the grid.

#### 13.3.8.5.1 Differential Components

The differential component has two parameters, including the input parameter **IN** and the output parameter **OUT**. It works to implement the differential function, namely, to make the differential of **OUT** equals to that of **IN**.

After you add a differential component, the component will be displayed in the grid as shown in Figure 13.32.



Figure 13.32

**EN** stands for Enable. Only when the value of **EN** is 1, the differential operation will be executed; when the value of **EN** is 0, the differential operation will not be executed.

To configure the properties of the differential component, double-click on it and you will see a dialog box as shown in Figure 13.33.

| 功能块配置  |          |                                       | •                            | ×  |
|--------|----------|---------------------------------------|------------------------------|----|
| 一功能块参数 | 效列表 ——   |                                       |                              |    |
|        | 改名 🔤     | 参数说明                                  | 参数值                          |    |
| 01     | .N<br>UT | ····································· | testl.int35<br>testl.double3 | 30 |
|        |          |                                       |                              |    |
|        |          |                                       |                              |    |
|        |          |                                       |                              |    |
|        |          |                                       |                              |    |
|        |          |                                       |                              |    |
| <      |          |                                       |                              |    |
| 参数名:   |          |                                       |                              | 设置 |
| 参数值:   |          |                                       |                              |    |
|        | V i      | 角定                                    | 🦹 取消                         |    |

Figure 13.33

The configuration parameters in Figure 13.33 are described as follows:

- **IN**: the data for which the differential operation is to be implemented. The value of this parameter must be a data in the real-time database.
- **OUT**: the result of the differential operation. The value of this parameter must be a data in the real-time database.

# 13.3.8.5.2 Integral Components

The Integral component has three parameters, which are **IN**, **OUT**, and **SW**. It works to implement the integral function, namely, to make the integral of **OUT** equal to that of **IN**. After you add an integral component, the component will be displayed in the grid as shown in Figure 13.34.



Figure 13.34

**EN** stands for Enable. Only when the value of **EN** is 1, the integral operation will be executed; when the value of **EN** is 0, the integral operation will not be executed.

To configure the properties of the component, double-click on it, and you will see a dialog box as shown in Figure 13.35.

| 劝   | 能块配置      |          | X                            |
|-----|-----------|----------|------------------------------|
| _ I | 功能块参数列表—— |          |                              |
|     | 参数名       | 参数说明     | 参数值                          |
|     | NI<br>TUO | 输入<br>输出 | test1. int37<br>test1. int38 |
|     | SW        | 积分方式 (0  | test1.int39                  |
|     |           |          |                              |
|     |           |          |                              |
|     |           |          |                              |
|     |           |          |                              |
|     |           |          |                              |
|     | <         |          |                              |
|     | 参数名:      |          |                              |
|     | 会数店。      |          |                              |
|     | 32 AXIE . |          | <u>~</u>                     |
|     |           |          | 9.9                          |
|     |           | 确定       | ▲ 取消                         |

Figure 13.35

The configuration parameters in Figure 13.35 are described as follows:

- **IN**: the data for which the integral operation is to be implemented. The value of this parameter must be a data in the real-time database.
- **OUT**: the result of the integral operation. The value of this parameter must be a data in the real-time database.
- **SW**: the integral mode. When SW=0, it means to reset the integral result, namely, OUT=0. When SW=1, it means the integral becomes cumulative. When SW=2, the integral function stops and the integral result is saved. The value of this parameter can be one of the following:
  - Int constant (0, 1, or 2)
  - Data in the real-time database

# 13.3.8.6 Control Algorithm

Control Algorithm function blocks are composed of two type of components, including PID Algorithm components and First-Order Model components. These components are only allowed to be placed in the last column of the grid.

#### 13.3.8.6.1 PID Algorithm Components

PID Algorithm components are used to implement the PID regulating function. For details, see section 12.5.6 PID Function Blocks.

After you add a PID algorithm component, the component will be displayed in the grid

as shown in Figure 13.36.



Figure 13.36

**EN** stands for Enable. Only when the value of **EN** is 1, the PID regulating algorithm will be executed; when the value of **EN** is 0, the PID regulating algorithm will not be executed.

To configure the properties of the component, double-click on it, and you will see a dialog box as shown in Figure 13.37.

| 劝 | 能块配置                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | < |
|---|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
| Γ | 功能快参数列表 —                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |   |
|   | 参数名                                                                          | 参数说明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 参数值     |   |
|   | SP<br>PV<br>AV<br>MAXOUT<br>MINOUT<br>MV<br>KP<br>TI<br>TD<br>IS<br>AM<br>PN | 设加量值<br>词量值值<br>输出最小出量<br>输出量动制工程。<br>输出量动制工程。<br>和出量动出量。<br>和出量动出量。<br>和出量动出量。<br>和出量动出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和出量。<br>和<br>和<br>和<br>和<br>和<br>和<br>和<br>和<br>和<br>和<br>和<br>和<br>和 |         |   |
|   | <                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |   |
|   | 参数名:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 设置      |   |
|   | 参数值:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u> |   |
|   | 1                                                                            | 确定                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 🎽 取消    |   |

Figure 13.37

The configuration parameters in Figure 13.37 are described as follows:

- **SP**: the setpoint. The value of this parameter must be the data in the real-time database.
- **PV**: the process variable to be measured. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **AV**: the output value. The value of this parameter must be the data in the real-time database.
- MAXOUT: the maximum value of the output. The value of this parameter can be

one of the following:

- Int constant
- Float constant
- Data in the real-time database
- **MINOUT**: the minimum value of the output. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **MV**: the manual output value. The value of this parameter must be the data in the real-time database.
- **KP**: the proportional coefficient. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - > Data in the real-time database
- TI: the integral time constant. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - > Data in the real-time database
- TD: the differential time costant. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - > Data in the real-time database
- **IS**: the cumulative integral deviation. The value of this parameter must be the data in the real-time database.
- AM: AM=1 indicates Manual, while AM=0 indictes Automatic. The value of this parameter can either directly come from the input of the connecting line of the ladder diagram, or can be configured in the Function Block Configuration dialog box. If the connecting line in the ladder diagram has an input corresponding to AM and the AM parameter is configured in the Function Block Configuration dialog box as well, the system will take the input of the connecting line in the ladder diagram as the value of AM. To configure the AM parameter in the Function Block Configuration dialog box, the value of the AM parameter can be one of the following:
  - Int constant (0 or 1)
  - > Data in the real-time database
- PN: PN=1 indicates the positive action, while PN=0 indicates the negative action. The value of this parameter can either directly come from the input of the connecting line in the ladder diagram, or can be configured in the Function Block Configuration dialog box. If the connecting line in the ladder diagram has an input corresponding to PN and the PN parameter is configured in the

Function Block Configuration dialog box as well, the system will take the input of the connecting line in the ladder diagram as the value of **PN**. To configure the **PN** parameter in the Function Block Configuration dialog box, the value of the **PN** parameter can be one of the following:

- Int constant (0 or 1)
- Data in the real-time database

#### 13.3.8.6.2 First-Order Model Components

Function: to realize model objects of the first-order system.

After you add an iintegral component, the component will be displayed in the grid as shown in Figure 13.38.



Figure 13.38

**EN** stands for Enable. Only when the value of **EN** is 1, the operation defined for the first-order model object will be executed; when the value of **EN** is 0, the operation will not be executed.

To configure the properties of the component, double-click on it, and you will see a dialog box as shown in Figure 13.39.

| 劝      | 能块配置                                     |                                    |      | ×            |
|--------|------------------------------------------|------------------------------------|------|--------------|
| _<br>ا | 功能块参数列表 —                                |                                    |      |              |
|        | 参数名                                      | 参数说明                               | 参数值  |              |
|        | IN<br>OUT<br>KP<br>MAXOUT<br>MINOUT<br>T | 输入<br>输出<br>放大最大值<br>输出最小值<br>时间常数 |      |              |
|        | <                                        |                                    |      |              |
|        | 参数名:                                     |                                    |      | 设置           |
|        | 参数值:                                     |                                    |      | $\mathbf{P}$ |
|        |                                          | 确定                                 | 🦹 取消 |              |

Figure 13.39

The configuration parameters in Figure 13.39 are described as follows:

- **IN**: the input. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **OUT**: the output. The value of this parameter must be a data in the real-time database
- **KP**: the amplification coefficient. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- MAXOUT: the maximum value of the output. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - > Data in the real-time database
- **MINOUT**: the minimum value of the output. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database
- **T**: the time constant. The value of this parameter can be one of the following:
  - Int constant
  - Float constant
  - Data in the real-time database

# 13.3.8.7 Timer

Timer function blocks are composed of five types of components, including Delay Timer (Decremental), Delay Timer (Incremental), Single-Shot Trigger Timer, Cycle Timer (Impulsive), and Cycle Timer (Square Wave). These components are not allowed to be placed in the last column of the grid.

# 13.3.8.7.1 Delay Timer (Decremental)

See the description about the dcremental timer in section 13.3.4 Timer.

# 13.3.8.7.2 Delay Timer (Incremental)

See the description about the incremental timer in section 13.3.4 Timer.

#### 13.3.8.7.3 Single-Shot Trigger Timer

Same as section 13.3.5 Single-Shot Trigger.

#### 13.3.8.7.4 Cycle Timer (Impulsive)

After you add a Cycle Timer (Impulsive) component, the component will be displayed in the grid as shown in Figure 13.40.



Figure 13.40

I stands for the input of the timer. When the value of I is 1, the timer will be started; when the value of I is 0, the timer stops running.

The difference between Cycle Timer and Delay Timer is that the execution of Delay Timer is only one time while Cycle Timer runs at interval, as described below:

- Delay Timer: starts running when the value of I becomes 1; however, it stops immediately when the preset running time runs out, even though the value still remains 1. To have Delay Timer start running again, you must set the vaue of I to 0 first and then change it to 1.
- Cycle Timer (Impulsive): is executed repeatedly at intervals. It starts running when the value of I is 1. When the preset running time runs out, the system returns the output 1 for the T end, which triggers the timer to restart counting and resets the value of T to 0.

Therefore, it can be understood that the system generates an impulse for Cycle Timer (Impulsive) at a specified interval. Thus, Cycle Timer (Impulsive) is suitable for the operations to be implemented at a certain interval.

Cycle Timer (Impulsive) works as follows:

- When the value of I is 1, the timer starts running. During the counting of the timer, the value of T remains 0. When the preset running time of the timer runs out, the value of T becomes 1, which triggers the timer to restart counting immediately and resets the value of T to 0.
- 2. When the value of I becomes 0, the timer stops running. The value of T will be 0 as long as the value of I is 0, regardless the status of the timer.

To configure the properties of the component, double-click on it, and you will see a dialog box as shown in Figure 13.41.

| Timing Module                                                 | Parameter Setting 🛛 🗙 |
|---------------------------------------------------------------|-----------------------|
| Setting<br>Initial Time<br>Variable:<br>Run Time<br>Variable: | 5000                  |
| Туре:                                                         | pulse 💌               |
|                                                               | DK Cancel             |

Figure 13.41

The configuration parameters in Figure 13.41 are described as follows:

- Initial Time Variable: defines when Cycle Timer starts running.
   You can either directly enter an Int constant for this parameter, or associate it to a data in the real-time database.
- Runtime Variable: reflects the running of the timer.
   You do not need to specify this variable if it is unnecessary to observe the running status of the timer.
- **Type**: For Cycle Timer (Impulsive), you need to set this parameter to **Impulsive**.

# 13.3.8.7.5 Cycle Timer (Square Wave)

After you add a Cycle Timer (Sqaure Wave) component, the component is displayed in the grid as shown in Figure 13.42.



Figure 13.42

I stands for the input of the timer. When the value of I is 1, the timer starts running; when the value of I is 0, the timer stops running.

Same as Cycle Timer (Impulsive), Cycle Timer (Square Wave) is also executed at intervals. However, there is difference in how they work, as described below:

- For Cycle Timer (Impulsive), the value of T becomes 1 when the preset running time runs out, and then the timer restarts counting and the value of T is reset to 0. Considering this, the output 1 of T is only a transient state. It can be understood that an impulse with the value as 1 is generated for T at a specified interval.
- For Cycle Timer (Square Wave), the value of **T** also becomes 1 when the preset running time runs out, and then the timer restarts counting. However, the value of

**T** remains 1 (instead of being reset to 0 immediately) until the preset running time runs out again when its value is then reset to 0. During the next cycle of running, the value of **T** remains 0; when the preset running time runs out again, the value of **T** becomes 1. Therefore, it can be concluded that the value of **T** for Cycle Timer (Square Wave) switches repeatedly between 0 and 1 at a specified interval, which looks like a square wave.

Cycle Timer (Square Wave) works as follows:

- At the beginning of the operation of the ladder diagram, the value of T is 0 since Cycle Timer (Square Wave) has not started running yet.
- 2. When the value of I is 1, the timer starts running. The value of T remains 0 during the first running of the timer. When the preset running time runs out, the value of T beomes 1, and the timer restarts counting while the value of T remains 1.
- When the preset running time runs out for the second time, the value of T switches back to 0, and the timer restarts counting while the value of T remains 0.
- 4. As long as the value of **I** is 1, the output value of **T** switches repeatedly between 0 and 1 at the specified interval.
- 5. When the value of **I** is 0, the timer will stop running. The output value of **T** will be 0 as long as the value of **I** is 0, regardless the status of the timer.

To configure the properties of the component, double-click on it, and you will see a dialog box as shown in Figure 13.43.

| Timing Module                                    | Parameter Setting | ×        |
|--------------------------------------------------|-------------------|----------|
| Setting<br>Initial Time<br>Variable:<br>Run Time | 10000             | <b>P</b> |
| Yariable.<br>Type:                               | square wave       |          |

Figure 13.43

The configuration parameters in Figure 13.43 are described as follows:

- Initial Time Variable: defines when the timer starts running.
   You can either enter an Int constant for this parameter, or associate it to a data in the real-time database.
- Runtime Variable: reflects the running of the timer.
   You do not need to specify this variable if it is unnecessary to observe the
running status of the timer.

• **Type**: For Cycle Timer (Square Wave), you need to set this parameter to **Square Wave**.

# 13.4 Monitoring the Ladder Diagram

EASY provides the ladder diagram monitoring function, which facilitates you to easily monitor the running status of the ladder diagram.

#### 13.4.1 Monitoring Configuration

Before monitoring the ladder diagram, you need to configure the monitoring parameters. Do as follows:

In the Ladder Diagram Editor window as shown in Figure 13.1, click on the Monitoring menu and then the sub-menu Monitoring Configuration, and you will see a dialog box as shown in Figure 13.44.

| Ion | itor Setting                                   | g                    | × |
|-----|------------------------------------------------|----------------------|---|
|     | Setting<br>Slave IP<br>Scanning<br>Period(ms): | 127. 0. 0. 1<br>1000 |   |
|     | 🖌 ок                                           | X Cancel             | _ |

Figure 13.44

The configuration parameters in Figure 13.44 are described as follows:

- **IP Address of Slave Device**: specifies the IP address of the computer on which the ladder diagram application is running.
- Scanning Cycle (ms): defines the monitoring interval (unit: ms).

#### 13.4.2 Starting Monitoring

After you configure the monitoring parameters, click on on the **Monitoring** menu and then the sub-menu **Start Monitoring** in the **Ladder Diagram Editor** window as shown in Figure 13.1, and the monitoring of the ladder diagram is started. Once the monitoring starts, it is not allowed to do any modification on the ladder diagram.

With the monitoring function, you can do the following operations.

#### 13.4.2.1 Monitoring the Operation Process of the Ladder Diagram

After the monitoring function is started, the operation process of the ladder diagram will be displayed in the ladder diagram editing area on the right side of the Ladder Diagram Editor window, as shown in Figure 13.45.



Figure 13.45

As shown in the figure above, if the ladder diagram component is in green, it means that the current value of the component is 1; otherwise, the current value is 0. If the color of the connecting line is green, it means that the connecting line is in the Open state; otherwise, it is in the Closed state.

You need to select the program block for monitoring. To select a program block, double-click on it on the left side of the **Ladder Diagram Editor** window.

If the monitoring fails, the failure error will be displayed in the editing area on the right side of the **Ladder Diagram Editor** window. For example, if communication exception occurs, an error message as shown in Figure 13.46 will be displayed.



The possible error messages are listed in the table below:

| Errror Message           | Possible Cause                                                        |  |  |
|--------------------------|-----------------------------------------------------------------------|--|--|
| Unable to connect to     |                                                                       |  |  |
| the HMI!                 | Communication exceptions.                                             |  |  |
| Communication error!     |                                                                       |  |  |
| System error!            | System processing exceptions.                                         |  |  |
| The program segment      | The project you opened is inconsistent with that currently running in |  |  |
| or block does not exist! | the HMI.                                                              |  |  |
| The program block is     | The current value of the operational variable associated with the     |  |  |
|                          | program segment where the program block belongs to is 0, which        |  |  |
|                          | causes the system to read that the program block is not running.      |  |  |

#### 13.4.2.2 Forcibly Changing the Digital Input Settings

After the monitoring function is started, you can forcibly control the digital input components directly in the editing area as shown in Figure 13.45.

Right-click on a digital input component, and you will see a right-click menu as shown in Figure 13.47.





To forcibly change the value of the digital input to 1, click on **Set as 1** on the right-click menu; to forcibly change the input value to 0, click on **Set as 0**.

#### 13.4.2.3 Monitoring the Data in the Real-Time Database

In the Ladder Diagram Editor window as shown in Figure 13.1, click on the Monitoring menu and then the sub-menu Monitoring Real-Time Data, and the EASY Real-Time Data Monitoring tool will be started, as shown in Figure 13.48.

| demo           |                  |                |     |
|----------------|------------------|----------------|-----|
|                | logo_move        | 0              | 13  |
| demo           | movearg          | 0              |     |
| demo           | move_v           | 0              |     |
| demo           | move_h           | 0              | 100 |
| demo           | a                | 0              |     |
| demo           | Ъ                | 0              |     |
| demo           | switch           | 0              |     |
| demo           | move_dir         | 0              |     |
| C              | c                | 0              |     |
| C              | d                | 0              |     |
| move           | step             | 0              |     |
| move           | step2            | 150            |     |
| test           | HIS END YEAR     | 2007           |     |
| test           | HIS END MONTH    | 11             |     |
| test           | HIS END DAY      | 10             |     |
| test           | HIS END HOUR     | 5              |     |
| test           | HIS END MINUTE   | 30             |     |
| test           | HISENDSECOND     | 0              |     |
| test           | HIS START YEAR   | 2007           |     |
| test           | HIS START MONTH  | 11             |     |
| test           | HIS START DAY    | 10             |     |
| test           | HIS START HOUR   | 4              |     |
| test           | HIS_START_MINUTE | 0              |     |
| test           | HIS_START_SECOND | 0              |     |
| test           | redraw           | 0              |     |
| test           | redrawhis        | 0              |     |
| test           | x                | 0              |     |
| test           | y                | 0              |     |
| flash          | switch           | 0              |     |
| flash          | timer            | 500            |     |
| лl             |                  | •              |     |
| Database Name: |                  | Variable Name: |     |



With this tool, you can monitor or modify the data in the real-time database.

### 13.4.3 Stopping Monitoring

In the Ladder Diagram Editor window as shown in Figure 13.1, click on Monitoring and then Stop Monitoring, and the monitoring function will be stopped.

# 13.5 System Variables for the Ladder Diagram

| Name   | Variable Name | Туре | Value | Description                  |
|--------|---------------|------|-------|------------------------------|
| system | PlcEnable     | hit  | 1     | • When the variable value is |

| Database<br>Name | Variable Name | Data<br>Type | Default<br>Value | Description                     |
|------------------|---------------|--------------|------------------|---------------------------------|
|                  |               |              |                  | 1, the ladder diagram           |
|                  |               |              |                  | function is enabled.            |
|                  |               |              |                  | • When the variable value is    |
|                  |               |              |                  | 0, the ladder diagram           |
|                  |               |              |                  | function is disabled.           |
|                  |               |              |                  | This variable defines the cycle |
|                  | PlcCycleTime  | ulong        | 100              | for executing the ladder        |
|                  |               |              |                  | diagram (unit: ms).             |
|                  |               |              |                  | This variable defines the       |
|                  |               |              |                  | heartbeat of the ladder         |
|                  |               |              |                  | diagram during the operation.   |
|                  |               |              |                  | As long as the ladder diagram   |
|                  | PlcHeartbeat  | bit          |                  | is running, the value of this   |
|                  |               |              |                  | variable will switch repeatedly |
|                  |               |              |                  | between 0 and 1. The value      |
|                  |               |              |                  | switch happens every time the   |
|                  |               |              |                  | ladder diagram is executed.     |

# Chapter 14 Expansion Module Programming

## 14.1 Overview

EASY HMI allows you to add expansion modules. The expansion modules can be added as dynamic databases into the HMI system and run as threads.

The expansion modules can be used for implementing special control algorithms or dedicated communication protocols.

The expansion modules must be programmed in the standard C programming language.

# 14.2 Module Export Functions

All expansion modules must be able to support two functions (external and non-static functions) which are described in the rest of this section.

#### 14.2.1 module\_init

Original Function: int module\_init(char \*params)
 Function Description: To initialize the module. EASY calls this function automatically at the system startup. You can program the module initialization code with this function.

Return Values: 0 Failed

1 Successful

Parameters: params: Initialization parameters.

#### 14.2.2 module\_exit

Original Function: void module\_exit()

Function Description: To exit the module. EASY calls this function

automatically at the system shutdown. You can program the module exit code with this function.

Return Values: None.

Parameters: None.

Note: The above two functions must be exported from the dynamic database of the module.

### 14.3 User IO Driver Module

The expansion module can also be used to realize specific IO driver. The driver will be registered during the module initialization, so that the system can initialize and then execute the driver automatically during the system operation.

The data architecture of the IO driver module is as follows:

#### typedef struct \_ctrl\_io\_driver\_t

{

```
struct _ctrl_io_driver_t *next;
char *name;
int (*init)();
int (*run)();
void (*release)();
}ctrl_io_driver_t;
```

In the data architecture above, **name** refers to the name of the driver, the **init** function pointer refers to the initial code of the driver, the **run** function pointer refers to the run function of the driver, the **release** function pointer refers to the release code of the driver, and the **next** function pointer is for system internal use only – for linking multiple drivers. Among all these functions, the **run** function runs in a separate thread, while the other functions run in the main thread of the HMI.

14.3.1 control\_io\_register\_dirver

| Original Function:  | int control_io_register_driver(ctrl_io_driver_t *io_driver)       |
|---------------------|-------------------------------------------------------------------|
| Function Descripti  | on: To call the function control_io_register_driver in the        |
| module i            | nitialization function <b>module_init</b> to register the driver. |
| Return Values: 0    | Failed                                                            |
| 1                   | Successful                                                        |
| Parameters: io_driv | ver. Data architecture of the IO driver module.                   |
| Example:            |                                                                   |
| static ctrl_io_d    | lriver_t echodemo_drive={NULL, "echodemo", echodemo_init,         |
| echoden             | no_run, echodemo_release};                                        |
| int module_ini      | t(char *params)                                                   |

```
{
    control_io_register_driver(&echodemo_drive);
    return 1;
}
```

# 14.4 Real-Time Database Read/Write Functions

14.4.1 rtdb\_set\_data\_value\_by\_name

```
Original Function: int rtdb_set_data_value_by_name(char *dbname,char *dataname,void *data_value)
```

**Function Description**: You can use this function in the expansion module to write the data in the real-time database. This function sets the value of the data in the real-time database.

Return Values: 0 Failed

1 Successful

Parameters: *dbname*: Name of a database.

dataname: Name of a data.

*data\_value*: Value of a data. The value of a data varies according to the data type. For example, the bit data has only 1 byte, the long data has 4 bytes, and the length of the string data is user-defined.

#### Example:

float value=1.0;

rtdb\_set\_data\_value\_by\_name("test","Ldata",&value);

The above function sets the value of the data Ldata in the database

test to 1.0.

14.4.2 rtdb\_get\_data\_value\_by\_name

Original Function: int rtdb\_get\_data\_value\_by\_name(char \*dbname,char \*dataname,void \*data\_value)

**Function Description**: You can use this function in the expansion module to read the data in the real-time database. This function obtains the value of the data from the real-time database.

Return Values: 0 Failed

1 Successful

Parameters: dbname: Name of a database.

dataname: Name of a data.

*data\_value*: Value of a data. The parameter **data\_value** requires you to assign the space in advance. For example, you need to assign 1 byte of space for the bit data and 4 bytes of space for the long data.

#### Example:

float value;

rtdb\_get\_data\_value\_by\_name("test","Ldata",&value);

The above function obtains the current value of the data Ldata from the database test and saves the value to the variable value.

# 14.5 Serial Port Communication Functions

EASY HMI provides some standard serial port communication functions, which facilitates the user-defined serial port communication programming.

14.5.1 serial\_open

Original Function: int serial\_open(const char \*device,int baud,int parity,int

data\_bits,int stop\_bits,int timeout)

Function Description: To open a serial port.

Return Values: -1 Failed

Other value Serial port handle

Parameters: device: Serial port name, for example, COM1, COM2, or COM3.

*baud*: Baud rate of the serial port. At present, the supported baud rates are 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200.

Parity including parity: check mode, No Parity Check (SERIAL\_PARITY\_NO), Odd Parity Check (SERIAL\_PARITY\_ODD), and Even Parity Check (SERIAL\_PARITY\_EVENT).

*data\_bits*: Number of data bits, including 5, 6, 7, and 8.

stop\_bits: Number of stop bits, including 1 and 2.

timeout: Duration of communication timeout (unit: ms).

Example: serial\_open("COM1", 9600, SERIAL\_PARITY\_NO, 8, 1, 100)

#### 14.5.2 serial\_close

Original Function: int serial\_close(int serial\_id) Function Description: To close a serial port.

Return Values: 0 Failed

1 Successful

**Parameters**: *serial\_id*: Serial port handle (returned by the function **serial\_open**) **Example**: serial\_close(1)

14.5.3 serial\_flush

Original Function: int serial\_flush(int serial\_id, int flag)

Function Description: To clear the buffering data of a serial port.

Return Values: 0 Failed

1 Successful

Parameters: serial\_id: Serial port handle (returned by the function serial\_open)

flag: Flush flag.

SERIAL\_FLUSH\_TX: clears the currently unsent data.

SERIAL\_FLUSH\_RX: clears the data in the receiving buffer.

SERIAL\_FLUSH\_TX|SERIAL\_FLUSH\_RX: clears the data in

both the sending and receiving buffers.

**Example**: serial\_flush(1, SERIAL\_FLUSH\_TX|SERIAL\_FLUSH\_RX)

14.5.4 serial\_write

Original Function: int serial\_write(int serial\_id, char \*buf, size\_t size)

Function Description: To send data to a serial port.

Return Values: -1 Failed

Other value Actual length of the data sent

Parameters: *serial\_id*: Serial port handle (returned by the function **serial\_open**) *buf*: Buffer for keeping the data to be sent.

size: Length of the data to be sent (unit: byte).

Example: serial\_write(1,buf, sizeof(buf))

#### 14.5.5 serial\_read

Original Function: int serial\_read(int serial\_id, char \*buf, size\_t size) Function Description: To receive data through a serial port. Return Values: -1 Failed Other value Actual length of the data received **Parameters**: *serial\_id*: Serial port handle (returned by the function **serial\_open**) *buf*: Buffer for keeping the received data. *size*: Size of the receiving buffer (unit: byte). **Example**: serial\_read(1,buf, sizeof(buf))

14.5.6 serial\_poll

Original Function: int serial\_poll(int serial\_id, int timeout) Function Description: To check whether there is data to read at a serial port. Return Values: -1 Error 0 Timeout, which meas no data is received during the timeout period 1 Data available to be read at the serial port Parameters: serial\_id: Serial port handle (returned by the function serial\_open) timeout: For inquiring the timeout duration (unit: ms)

Example: serial\_poll(1,100)

# 14.6 Other Functions

Expansion modules also support the functions programmed in the standard C programming language and the internal functions provided in EASY HMI; for example, the function **sys\_sleep** (see EASY HMI User Manual for more details).

# 14.7 Expansion Module Commissioning

EASY HMI provides a commissioning solution which is based on Microsoft Visual C++ 6.0. For details, see the example project **echodemo**.

In the **echodemo** project file, the **echodemo** directory covers for expansion module projects, the **echodemohost** directory for serial port communication applications on the host, and the **project** directory for EASY HMI projects which are for the demo of the application of expansion modules.

The main function of the **Echodemo** project is to send a string to the HMI. The host-side application will receive this string and then send it back. The **Echodemo** expansion modules can call all the functions for serial port communication to realize user-defined communication scenarios. See the source codes for the working principles of expansion modules.

The main procedure for compiling the VC project for expansion modules is listed as follows:

- 1) Create a VC standard dynamic library DLL project (MFC support not required).
- 2) Add the source files for expansion modules (such as echodemo.c), the header file EASY.h and the DEF file (such as echodemo.def). The DEF file needs both export functions module\_init and module\_exit.
- Add all applications and files of the EASY runtime library. For example, add the applications and files Icrun.exe, Icrun.dll, Icrun.lib, iconv.dll, Iibiconv-2.dll, Iibxml2.dll, pic.dll, and the files in the directory conffile to the project directory.
- Set project parameters, and add the reference of the library lcrun.lib in the Link library.
- Set project commissioning parameters. Set Icrun.exe as an executable file under Debug, and set the program parameter as a project in EASY HMI (such as ..\project).
- 6) Set the project Post-build parameter to copy the module file to the HMI project directory; for example, **copy .\debug\echodemo.dll ..\project\echodemo.dll**.
- 7) Compile and then commission the project.

# 14.8 Expansion Module Management

After you complete compiling an expansion module, you need to integrate the module into the developed project, so that the module can be downloaded or run together with the project. This can be done through the EASY **Project Manager** window. The detailed procedure is listed as follows:

- 1) Configure the expansion module in the **Project Manager** window.
- 2) Compile the expansion module.
- 3) Download the expansion module to the HMI.

The rest of this section describes this procedure in details.

#### 14.8.1 Configuring an Expansion Module

You can define more than one expansion module in a project. These expansion modules can be configured and managed through **Expansion Module Configuration** in the **Project Manager** window.

#### 14.8.1.1 Adding a Module

To add an expansion module, do as follows:

 In the navigation tree on the left side of the Project Manager window, select Expansion Module Configuration. Right-click in the blank area on the right side of the window, and you will see a right-click menu as shown in Figure 14.1.



Figure 14.1

2) Select Add a Module, and you will see the dialog box as shown in Figure 14.2.

| Todule Settin                                                                                                               | ıg      | × |
|-----------------------------------------------------------------------------------------------------------------------------|---------|---|
| Module Setting<br>Module Name:<br>Compile<br>Additional<br>Define:<br>Source File:<br>Initialize<br>Param:<br>T Disable Mod |         | P |
|                                                                                                                             |         | < |
| , ok                                                                                                                        | Compile |   |



The configuration parameters in Figure 14.2 are described as follows:

- **Module Name**: The name of the module. You can choose any name for an expansion module. However, the expansion modules in the same project cannot have the same name.
- Additional Compiling Definition: corresponds to the compiling option, such as
   -D\_DEBUG –D\_MYDEF –Ic:\myinclude in the C language.
- **Source File**: specifies the source file(s) to be compiled.
- Initialization Parameter: defines the initialization parameter for the expansion module. The value of this parameter is a user-defined string, which will be used as the value of param in the module initialization function module\_init at the module initialization.

- **Disable the module**: If this option is checked, the module will be disabled, which means that the system will not load the module and that the module will not be executed.
- 3) Click on **OK** after the module configuration is complete.

The configured module will be displayed in the module list on the right side of the **Project Manager** window, as shown in Figure 14.3.

| Module name | Compile add | Source file | Parameters | Enable |
|-------------|-------------|-------------|------------|--------|
| module_test |             |             |            | Enable |
|             |             |             |            |        |
|             |             |             |            |        |
|             |             |             |            |        |
|             |             |             |            |        |
|             |             |             |            |        |
|             |             |             |            |        |
|             |             |             |            |        |
| I           |             |             |            |        |
|             |             | Figure 14.3 |            |        |

#### 14.8.1.2 Deleting a Module

To delete a module, do as follows:

- 1) In the navigation tree on the left side of the **Project Manager** window, select **Expansion Module Configuration**.
- On the right side of the **Project Manager** window, right-click on the expansion module you want to delete, and you will see a right-click menu as shown in Figure 14.4.



Figure 14.4

3) Select **Delete a Module**.

The selected module will be deleted.

#### 14.8.1.3 Modifying Module Cofiguration

To modify the configuration of an expansion module, do as follows:

- In the navigation tree on the left side of the Project Manager window, select Expansion Module Configuration.
- 2) On the right side of the **Project Manager** window, right-click on the expansion module for which you want to modify the configuration, and you will see a

right-click menu as shown in Figure 14.5.

| module_test |                           | Enable |
|-------------|---------------------------|--------|
|             |                           |        |
|             | Add Module( <u>N</u> )    |        |
|             | Delete Module( <u>D</u> ) |        |
|             | Modify( <u>P</u> )        |        |

Figure 14.5

#### 3) Select Modify.

You can modify the module configuration according to your needs.

#### 14.8.2 Compiling an Expansion Module

The configured expansion modules can be downloaded to the HMI only after they are compiled.

To compile an expansion module, do as follows:

- 1) In the navigation tree on the left side of the **Project Manager** window, select **Expansion Module Configuration**.
- On the right side of the Project Manager window, double-click on the expansion module you want to compile, and you will see a dialog box as shown in Figure 14.2.
- 3) Click on the **Compile** button to start compiling the module.

#### 14.8.3 Downloading an Expansion Module

Once compiled successfully, the expansion modules will be copied automatically to the HMI project directory. They are downloaded together with the project to the HMI; you do not need to download the module individually.

# Chapter 15 Access Management

#### 15.1 Overview

In practical operation, some interfaces can only be accessed by the users with higher privileges considering security reasons. The role of operator does not have the privilege to access such interfaces. Regarding this, EASY provides the access management function.

The access management function of EASY is actually window-based, which means it allows configuring security privileges for each window.

The access management function of EASY involves the following concepts:

#### 1. Security Level:

In the EASY system, different windows have different privileges. Actually, you can define the security level from each window.

At present, EASY supports 10 security levels from level 1 to level 10, among which level 1 is the lowest while level 10 is the highest. During the configuration, you can set a password for each level, and the passwords for the ten levels are saved individually in the system variables from **\$hmi\_system\_set.security\_level1\_pass** to **\$hmi\_system\_set.security\_level10\_pass**.

#### 2. Security Level of Window:

During the configuration, you can set a security level for each window. This security level actually defines the access privilege of the window.

#### 3. Current Security Level of System:

The system is always running under certain security level. The current security level of the system is saved in to the system variable **\$hmi\_system\_set.cur\_security\_level**. To change the current security level of the system, you can change the value of this variable in the script.

When you access a window, the system will automatically compare whether the current security level of the system is Equal To Or Greater Than the security level of the window: If so, the system has higher security level compared to the window, and thus you can access the window; otherwise, the system is at a lower security level, and thus you need to pass the access authentication to access the window.

To implement the access management function, follow the steps below:

- 1. Set the password for each security level.
- 2. Set the window properties related to access management.
- 3. Change the current security level of the system.

See the following sections for details.

# 15.2 Setting Security Level Password

The passwords for the ten security levels from level 1 to level 10 are saved individually to the system variables from **\$hmi\_system\_set.security\_level1\_pass** to **\$hmi\_system\_set.security\_level10\_pass**. You can modify the password of each security level according to your needs. If you leave the password of a security level to blank, it means that the specific security level is not in use. The security level password can be as long as 20 characters (including the end character **\0** of a character string).

You can set the security level in the following two ways:

- Change the value of the security level in the script during the configuration.
- Set the initial value for each password during the parameter configuration as shown in Figure 15.1.

| Parameter Settin<br>Data Setting<br>Database Name:<br>Realting Data | g<br>hmi_system_set |  |
|---------------------------------------------------------------------|---------------------|--|
| Name:<br>Initial Value:                                             | 12345               |  |
| V OK                                                                | X Cancel            |  |
|                                                                     | Figure 15.1         |  |

# 15.3 Setting Window Properties Related to Access Management

There are two window properties which are related to access management, as shown in Figure 15.2:

| Window          |                  |
|-----------------|------------------|
| caption         | No caption       |
| centerwnd       | Not align center |
| bkcolor         | #FFFFF           |
| security level  | 0                |
| security handle | no prompt        |

| Figure 1 | 5.2 |
|----------|-----|
|----------|-----|

- Security Level: defines the security level of the window. The value range is from 0 to 10, among which the values from 1 to 10 correspond to security level 1 to security level 10 individually. If you set the security level of the window to 0, it means that you can access the window without any security authentication. Because the value 0 is the lowest security level you can set for the window. In this case, the current security level of the system can always be higher than that of the window, and thus you can directly access the window.
- Security Processing Mode: As stated above, when the current security level of the system is lower than that of the window, you are not allowed to access the window, and thus the system will process these kind of situations according to setting of the Security Processing Mode property of the window. The following settings are available for this property:
  - No Prompt: You are not allowed to access this window, and no error message will be prompted.
  - Prompt No Access: You are not allowed to access the window, and a dialog box will be displayed prompting that you do not have enough access to access the window.
  - 3) Prompt for Password: A window will pop out prompting for a password. The system will verify the entered password for authentication. You can access the window only after the entered password passes the authentication. The password authentication goes as follows: The system compares the entered password with the passwords for each of the security levels starting from the current security level of the window. The authentication is successful only when the entered password is consistent with that of one of the security levels among then 10; otherwise, the authentication fails.

# 15.4 Setting Current System Security Level

The current security level of the system is saved to the system variable **\$hmi\_system\_set.cur\_security\_level**. The value range of this variable is 0 – 10, with the default value as 0.

You can change the current security level of the system in the following two ways:

- Change the value of the current security level in the script during the configuration.
- Set the initial value for this variable during the parameter configuration, as shown in Figure 15.3.

| Parameter Settin       | g                  | × |
|------------------------|--------------------|---|
| -Data Setting          |                    |   |
| Database Name:         | hmi_system_set     |   |
| Realtime Data<br>Name: | cur_security_level |   |
| Initial Value:         | 0                  |   |
|                        |                    |   |
| 🖌 ок                   | X Cancel           |   |
|                        |                    |   |

Figure 15.3

# Chapter 16 Printing

# 16.1 Overview

EASY provides the window-based printing function, which allows you to print any area in the current window.

To print from the window, you need to do the following:

- 1. Set printing parameters.
- 2. Call the printing function to realize the printing function.

See the following sections for more details.

# 16.2 Setting Printing Parameters

At present, EASY supports the following printing parameters:

- Printer Type
- Printing Resolution
- Paper Type
- Top Margin
- Left Margin
- Printing Scaling

Each of the above printing parameters is associated with a system variable. Before you start printing, you must set the printing parameters appropriately according to your actual needs.

| Parameter    | System Variable      | Description                               |
|--------------|----------------------|-------------------------------------------|
| Name         | System variable      | Description                               |
| Printer Type | printer.printer_name | Indicates the model of the printer.       |
| Printing     | printer resolution   | Defines the printing resolution (measured |
| Resolution   | printer.resolution   | in DPI).                                  |
| Paper Type   | printer.paper        | Defines the paper type, such as A4.       |
| Loft Morain  | printer left morgin  | Defines the left margin of the printing   |
|              | printer.ieit_margin  | (unit: cm).                               |
| Top Morgin   | printer top morgin   | Defines the top margin of the printing    |
|              | printer.top_margin   | (unit: cm).                               |

The printing parameters are described in details in the table below.

| Printing Scaling | printer.scaling | Defines the printing scaling value. |
|------------------|-----------------|-------------------------------------|
|------------------|-----------------|-------------------------------------|

You can set these printing parameters in the following three methods:

Method 1: In the **Project Manager** window, select **Configuration** and then **Printing Setting**, and you will see the dialog box as shown in Figure 16.1.

| P | rint Configur           | ation       |                     |       | X |
|---|-------------------------|-------------|---------------------|-------|---|
|   | -HMI Print Config       | ration      |                     |       | _ |
|   | Printer Type:           | EPSON ME 1+ |                     | •     |   |
|   | Print<br>Resolution:    | 180 DPI     |                     | •     |   |
|   | Paper Type:             | A4          |                     | •     |   |
|   | Top<br>Margin(cm):      | 1.2         | Left<br>Margin(cm): | 2.5   |   |
|   | Print<br>Magnification: | 0.5         |                     |       |   |
|   | V                       | ок          | <b>X</b> c          | ance. |   |



Select the printing parameters according to your actual needs, and then click on **OK**.

Method 2: You can set an initial value for each printing parameter in the Parameter Configuration window, as shown in Figure 16.2. (Here, it takes the **Printer Type** parameter for example.)

| Parameter Settin       | ng           | X |
|------------------------|--------------|---|
| Data Setting           |              |   |
| Database Name:         | printer      |   |
| Realtime Data<br>Name: | printer_name |   |
| Initial Value:         | escp2-me1    |   |
|                        |              |   |
| <u></u> 01             | Cancel       |   |

Figure 16.2

Method 3: You can set or change the value of the printing parameters in the script during the configuration.

# 16.3 Calling Printing Function

You can call the system function **print\_window** for printing from the window. At present, this function allows only printing from the currently displayed window.

This function is described in details below:

# **Original Function:** int print\_window(char \*window\_name, int x1, int y1, int x2, int y2)

**Function Description**: To print the selected area from the currently displayed window.

Return Values: 1 Successful

Other value Failed

Parameters: window\_name: Name of the window to be printed.

x1: X-axis value of the left top corner of the area to be printed.

y1: Y-axis value of the left top corner of the area to be printed.

x2: X-axis value of the right bottom corner of the area to be printed.

y2: Y-axis value of the right bottom corner of the area to be printed.

Considering that printing might take some time, the system function **print\_window** will return the value immediately rather than waiting for the printing to be complete. And then the printing operation will be processed at the background. You can check the printing status by inquiring the system variable **printer.status**. The value of **printer.status** can be one of the following:

| $\triangleright$ | 0 | <br>ldle                       |
|------------------|---|--------------------------------|
| ►                | 1 | <br>Printing                   |
| ≻                | 2 | <br>Printer not connected      |
| ≻                | 3 | <br>Printer type not supported |
| $\triangleright$ | 4 | <br>Printing error             |

# Chapter 17 Other Commonly-Used Functions

# 17.1 Offline Simulation

The Offline Simulation function allows you to simulate the project operation directly on the PC, which saves you the trouble of downloading the project to the HMI. This function greatly facilitates the programming and the commissioning. At present, EASY supports simulating almost all the functions on the PC, such as interface configuration, communication, and soft PLC.

To realize the offline simulation for a project after it is compiled and saved, select the menu **Tools** and then the sub-menu **Offline Simulation** in the **Project Manager** window.

Alternatively, you can click on the button in the toolbar or press on the shortcut key F5. You will see the offline simulation window as shown in Figure 17.1.



Figure 17.1

By default, a set of menus will be displayed in the offline simulation window, which allows you to implement the project commissioning easily. If you do not want these menus to be displayed, you need to add the system parameter **\$system.HideMainWindow** during the parameter configuration, as shown in Figure 17.2.

| Parameter Settin       | ıg              | × |
|------------------------|-----------------|---|
| Data Setting           |                 | 7 |
| Database Name:         | system          |   |
| Realtime Data<br>Name: | Hi deMainWindow |   |
| Initial Value:         | 1               |   |
|                        |                 |   |
| 🖌 ок                   | Cancel          |   |

Figure 17.2

If you set the value of the parameter **\$system.HideMainWindow** to 1, the menus will not be displayed; if you set it to 0 or leave it blank, then the menus will be displayed.

During the offline simulation mode, click on the menu **Window** and then the sub-menu **Real-Time Data Display**, and you can see the **Real-Time Data List** dialog box, as shown in Figure 17.3. In this dialog box, you can monitor the data in both the real-time database and the interface database.

| Realtime Database    |                |           |   | HMI database |           |              |  |
|----------------------|----------------|-----------|---|--------------|-----------|--------------|--|
| Database             | Data Name      | Value     | ^ | Туре         | Data Name | Value        |  |
| testbas1             | test data1     | x46x00x00 |   | mem          | a1        | 000000000000 |  |
| testbas1             | data1          | 70        |   |              |           |              |  |
| testbas1             | data2          | 20        |   |              |           |              |  |
| testbas1             | data3          | 40        |   |              |           |              |  |
| testbas1             | data4          | 11        |   |              |           |              |  |
| testbas1             | data5          | 15        |   |              |           |              |  |
| testbas1             | yewei alarm    | 0         |   |              |           |              |  |
| system               | Logic True     | 1         |   |              |           |              |  |
| system               | Logic_False    | 0         |   |              |           |              |  |
| system               | Logic_And      | 1         |   |              |           |              |  |
| system               | Logic_Or       | 2         |   |              |           |              |  |
| system               | Logic_Xor      | 3         |   |              |           |              |  |
| system               | Logic_Not      | 4         |   |              |           |              |  |
| system               | Arithm Add     | 1         |   |              |           |              |  |
| system               | Arithm Sub     | 2         |   |              |           |              |  |
| system               | Arithm Mul     | 3         |   |              |           |              |  |
| system               | Arithm Div     | 4         |   |              |           |              |  |
| system               | Compare More   | 0         |   |              |           |              |  |
| system               | Compare More E | 1         |   |              |           |              |  |
| system               | Compare Less   | 2         |   |              |           |              |  |
| system               | Compare Less E | 3         |   |              |           |              |  |
| system               | Compare_Equal  | 4         |   |              |           |              |  |
| system               | Compare Not E  | 5         |   |              |           |              |  |
| system               | Double_Const_0 | 0.00      |   |              |           |              |  |
| system               | HmiLoopCount   | 92        |   |              |           |              |  |
| system               | HideMainWindow | 0         |   |              |           |              |  |
| system               | CurDateTime    | 12470174  |   |              |           |              |  |
| system               | loCycleTime    | 500       |   |              |           |              |  |
| system               | FbdCycleTime   | 100       |   |              |           |              |  |
| system               | PlcCycleTime   | 100       |   |              |           |              |  |
| system               | FbdEnable      | 1         | ~ |              |           |              |  |
| Database  <br>/alue: | Da             | ata Set   |   | ,<br>Data    |           | Value:       |  |



The **Real-Time Data List** dialog box is composed of two panes, left and right. The left side pane lists all the data in the current real-time database (including the user-defined data and the internal system data), and the rightside pane lists all the data in the interface database (including the user-defined data and the system internal data). In this dialog box, you can not only view the current value of the data, but also change the value forcibly. Do it as follows:

Double-click on the data you want to change in the data list, and you can see the corresponding database name, variable name, and variable value displayed in the editing area at the bottom of the window. You can enter the database name and variable name corresponding to the selected data, and then enter the data value to be changed for

Variable Value, and then click on the Settings button.

Besides the **Real-Time Display** sub-menu, the **Window** menu also includes the sub-menus which stand for all the configuration interfaces of the current project. The names of the menus correspond to the names defined for **Window Title** of the interfaces in **Project Manager**. In other words, by selecting a sub-menu, you can go to the corresponding interface directly.

## 17.2 Online Simulation

Different from the offline simulation, the online simulation requires downloading the application to the HMI. Besides, the PC must communicate well with the HMI for the data required for the online simulation to be transferred from the HMI to the PC, so that the online simulation can be realized on the PC.

To realize the online simulation, select the Tools menu and then the Online

**Simulation** sub-menu or click on the button in the toolbar, and you will see the **Online Simulation** dialog box as shown in Figure 17.4.

| IP Address:                  | 192. 168. 1. 10 |
|------------------------------|-----------------|
| Communication<br>Port:       | 8200            |
| Overtime(ms):                | 200             |
| Communication<br>Period(ms): | 200             |

Figure 17.4

The configuration parameters in Figure 17.4 are described as follows:

- IP Address: specifies the IP address of the HMI.
- **Communication Port**: specifies the number of the interception port of the HMI; the system default port number is 8200.
- **Timeout Time**: defines the period of timeout which occurs during the communication between the PC and the HMI (unit: ms).
- **Communication Cycle**: defines the interval for the PC to obtain data from the HMI (unit: ms).

After you configure all the parameters, click on Run, and you can start the online

simulation of a project. Click on the **Windo**w menu and then the **Real-Time Data Display** sub-menu to monitor the data in both the real-time database and the interface database. For more details, see section 17.1 Offline Simulation.

# 17.3 Setting Project Password

You can set a password for each project. When uploading a project, you will be prompted to enter the password. You are allowed to upload the project only when you enter the correct password.

To set the project password, do as follows:

1) In the Project Manager window, click on the Tools menu and then the

**Download a Project** sub-menu or click on the button in the toolbar, and you will see the **Download a Project** dialog box as shown in Figure 17.5.

|              |                  |              | ×            |
|--------------|------------------|--------------|--------------|
| 192, 168, 1, | 10               |              |              |
| Download     | Password Setting | -   🕥 Time   | Quit         |
|              | 192. 168. 1.     | 192.168.1.10 | 192.168.1.10 |

Figure 17.5

 Click on the Set Password button, and you will see a dialog box as shown in Figure 17.6.





3) Set the password in Figure 17.6, and then click on OK.

# 17.4 Uploading Projects

EASY allows you to upload projects to the PC from the HMI.

To upload a project, do as follows:

1) In the Project Manager window, click on the Tools menu and then the Upload a

**Project** sub-menu or click on the button in the toolbar, and you will see the **Upload a Project** dialog box as shown in Figure 17.7.

| ect                           | ×                                                                    |
|-------------------------------|----------------------------------------------------------------------|
| 192. 168. 1. 10               |                                                                      |
| *****                         |                                                                      |
| C:\Documents and Settings\冯凝\ |                                                                      |
| ad 🛛 🗶 Canc                   | e1                                                                   |
|                               | ect<br>192.168.1.10<br>******<br>C:\Documents and Settings\冯凝\<br>ad |

Figure 17.7

The configuration parameters in Figure 17.7 are described as follows:

- Slave IP Address: refers to the IP address of the HMI.
- **Project Password**: refers to the password you set for the project.
- **Upload Path**: defines the path for saving the project uploaded to the PC from the HMI.
- 2) After you configure all the parameters, click on the Upload button.

# 17.5 Time Calibration

The time calibration function of EASY is for calibrating the system time of the HMI, namely, to keep it consistent with that of the PC.

To calibrate the system time of the HMI, do as follows:

1) In the Project Manager window, click on Tools menu and then the Download a

**Project** sub-menu, or click on the button in the toolbar, and you will see the **Download a Project** dialog box as shown in Figure 17.8.

| Slave IP Address: | 192.168.1.10  |            |      |         |
|-------------------|---------------|------------|------|---------|
|                   |               |            |      |         |
| Create            | -<br>Download | • Password | Time | W Quit  |
| Package           |               | Setting    |      | A. yure |

Figure 17.8

2) Specify the IP address of the HMI behind **Slave IP Address**, and then click on the **Calibrate** button.

# 17.6 Downloading Upgrade Packages

The Download Upgrade Packages function allows you to specify and then download a upgrade package to the HMI.

A upgrade package actually refers to the upgrade file with the file extension name as **Icp**. A upgrade package may refer to either of the following:

Upgrade file generated after you click on the Generate a Download
 Package button in the Download a Project dialog box as shown in Figure 17.8.

This upgrade file is saved in the sub-folder **download** in the project path. By downloading this upgrade package, you can upgrade the project in the HMI.

• Other upgrade packages provided by the system, which are for upgrading the bottom system or realizing other functions.

To download a upgrade package, do as follows:

1) In the Project Manager window, click on the Tools menu and then the

**Download Upgrade Package** sub-menu, or click on the button in the toolbar, and you will see the **Download Upgrade Package** dialog box as shown in Figure 17.9.

| mitoau racka <sub>6</sub> | ч<br>        |   |      |
|---------------------------|--------------|---|------|
| Slave IP Address:         | 192.168.1.10 |   |      |
| Upgrade File:             |              |   |      |
| 📥 Download                |              | x | Quit |

Figure 17.9

The configuration parameters in Figure 17.9 are described as follows:

- Slave IP Address: refers to the IP address of the HMI.
- Upgrade File: specifies the upgrade file which is required to be downloaded to the HMI.
- 2) After you configured all the parameters, click on the **Download** button.

Once the downloading of the upgrade package is complete, the HMI might need a restart depending on the contents of the upgrade package.

# 17.7 Downloading Startup Interface

The Downloading Startup Interface function allows you to set the start-up interface of the HMI to be displayed at the system start.

To download the startup interface, do as follows:

1) In the Project Manager window, click on the Tools menu and then the

**Download Startup Interface** sub-menu, or click on the button in the toobar, and you will see the **Download Startup Interface** dialog box as shown in Figure 17.10.

| Slave IP Address: | 192. 168. 1. 10 |   |      |
|-------------------|-----------------|---|------|
| Download Image:   | [               |   | 2    |
| 📕 Download        | [               | ¥ | Quit |

#### Figure 17.10

The configuration parameters are described as follows:

- Slave IP Address: refers to the IP address of the HMI.
- **Interface to Download**: specifies the name of the file which contains the startup interface.
- 2) After you configure all the parameters, click on the **Download** button.

# 17.8 Monitoring HMI Operation

The Monitoring HMI Operation function allows you to monitor the CPU and Memory utilization during the HMI operation.

To monitor the HMI operation, do as follows:

 In the Project Manager window, click on the Tools menu and then the Monitor HMI Operation sub-menu, and you will see the Operation Monitoring dialog box as shown in Figure 17.11.

| Slave IP<br>Address | 192.168.1.   | . 10                  |   |
|---------------------|--------------|-----------------------|---|
| Memory Informs      | tion for Vse |                       |   |
| Total Memory:       |              | Memory Usage:         |   |
| Free Memory:        |              |                       |   |
| Application Ru      | nning Status |                       |   |
| Memory Usage:       |              | Memory Usage<br>Rate: |   |
| CPV Vtilizatio      | n:           |                       |   |
|                     |              |                       | - |

Figure 17.11

 Set the IP address of the HMI behind Slave IP Address, and then click on the Start Monitoring button, which starts the monitoring of the HMI operation.

In this dialog box, you can monitor the following aspects of the HMI operation:

Memory Utilization

- Total Memory: Total memory size of the HMI.
- Used Memory: Size of the HMI memory which is currently being used for the HMI operation. The memory here refers to the memory taken by all the applications running in the HMI, not only the memory taken by the user-defined project, but also that taken by the bottom system.
- Available Memory: Size of the HMI memory which is available for other usages.
  - Application Status
- Used Memory: Size of the HMI memory taken by the user-defined project.
- Used Memory Ratio: Ratio of the memory taken by the user-defined project against the total size of the HMI memory.
- CPU Utilization: Amount of CPU utilized by the user-defined project.

# 17.9 Monitoring Real-Time Data

The Monitoring Real-Time Data function allows you to monitor the real-time data of the project currently running in the HMI.

To monitor the real-time data of a project, do as follows:

 Click on Start, go to EASY Industrial Control Software, and you can see a Real-Time Data Monitoring tool, as shown in Figure 17.12.



Figure 17.12

 Click on Real-Time Data Monitoring, and the EASY Real-Time Data Monitoring window will be displayed, as shown in Figure 17.13.

| com_link1_status<br>com_link1_ctl<br>DI_0 | 1                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| com_link1_ctl<br>DI_0                     | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI_O                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI_1                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI_2                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI_3                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI_4                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI 5                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI_6                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI_7                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI_8                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI 9                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI 10                                     | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI 11                                     | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI 12                                     | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI 13                                     | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI 14                                     | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DI 15                                     | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DO 0                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AT 0                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A0_0                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| status                                    | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DO 1                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D0 2                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D0 3                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D0 4                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D0 5                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D0 6                                      | 0                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D0 7                                      | 0                                                                                                                                                                                                                                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                           | DI_2<br>DI_3<br>DI_4<br>DI_5<br>DI_6<br>DI_7<br>DI_8<br>DI_9<br>DI_10<br>DI_11<br>DI_12<br>DI_12<br>DI_13<br>DI_14<br>DI_14<br>DI_15<br>D0_0<br>AI_0<br>AO_0<br>status<br>D0_1<br>D0_2<br>D0_3<br>D0_4<br>D0_7<br>N_10<br>AD_0<br>SU | DI_2         0           DI_3         0           DI_4         0           DI_5         0           DI_6         0           DI_7         0           DI_8         0           DI_9         0           DI_11         0           DI_12         0           DI_13         0           DI_14         0           D0_0         0           A0_0         0           status         0           D0_1         0           D0_3         0           D0_5         0           D0_6         0 |



 Before starting monitoring the real-time data, you need to configure the monitoring settings: Click on the **Monitoring Setting** button, and you will see the **Monitoring Setting** dialog box as showin in Figure 17.14.

| 监控设置                                     |  |
|------------------------------------------|--|
| 设置<br>工程路径:<br>从机IP地址:<br>扫描周期(ms): 1000 |  |
| 确定即消                                     |  |



The configuration parameters in Figure 17.14 are described as follows:

- **Project Path**: specifies the path where the user-defined project is saved. The project specified here must be the one currently running in the HMI.
- Slave IP Address: specifies the IP address of the HMI.

- Scanning Cycle: defines the interval period for the monitoring tool to obtain data from the HMI.
- 4) After you configure all the above parameters, click on OK in the Monitoring Setting dialog box, and all the data in the real-time database of the selected project will be listed in the Real-Time Database list in Figure 17.13.
- 5) Click on the **Start Monitoring** button, and the system starts monitoring the currently running project.

During the monitoring, you can not only obtain the real-time value but also forcibly change the value of the data in the real-time database.

Double-click on the data you want to change in the data list, and you can see **Database Name**, **Variable Name**, and **Variable Value** related to the selected data displayed at the bottom of the **EASY Real-Time Data Monitoring** window as shown in Figure 17.13.

Alternatively, you can enter the database name and variable name of the data you want to change at the bottom of the **EASY Real-Time Data Monitoring** window, enter the value to be changed to behind **Variable Value**, and then click on **Modify Value** button.

- 6) To stop the monitoring, click on the **Stop Monitoring** button.
- To always see the EASY Real-Time Data Monitoring window on top, you can check the Always on top option.

# 17.10 Downloading Projects to Flash Drive

The Downloading Projects to Flash Drive function allows you to download project files to the HMI using the flash drive.

To download project files through the flash drive, follow the steps below:

#### 1) Generate the downloading package.

To generate a downloading package, do as follows:

a) In the Project Manager window, click on the Tools menu and then the

**Download a Project** sub-menu, or click on the button in the toolbar, and you will see the **Download a Project** dialog box as shown in Figure 17.15.



Figure 17.15

b) Specify the IP address of the HMI behind Slave IP Address, and then click on the the Generate a Download Package button.

The file **lcupdate.lcp** will be generated and saved to the **download** sub-folder in the path where the project is saved. This **lcupdate.lcp** file is the upgrade package file for this project.

2) Copy the downloading package to a flash drive.

Copy the upgrade file **Icupdate.Icp** from the **download** sub-folder of the project path to a flash drive.

#### 3) Import the package file from the flash drive to the HMI.

Insert the flash drive to the USB port of the HMI. You can import the upgrade package file to the HMI in the following two ways:

• Use the **Program Upgrade (USB)** button in the **System Setting** window.

To see the **System Setting** window, press down in sequence the top left corner, the top right corner, and then the bottom left corner of the HMI. The **System Setting** window will be shown as Figure 17.16.

| Network 1             |                     | Network 2 |           |           |
|-----------------------|---------------------|-----------|-----------|-----------|
| IP: 19                | 2 . 168 . 0 . 10    | IP:       | 192 - 168 | . 0 . 10  |
| Netmask: 25           | 5 . 255 . 255 . 0   | Netmask:  | 255 . 255 | . 255 . 0 |
| Route: 19             | 2 . 168 . 0 . 1     | Route:    | 192 . 168 | . 0 . 1   |
|                       | Display             | . <u></u> | Serial    |           |
| Brightness            | 100 %               | COM2: (   | 🔿 RS232 🔶 | RS485     |
| ScreenSaver<br>Delay: | 0 Second (0         | COM3: (   | 🔿 RS232 🔶 | RS485     |
| Time                  | 2009-07-09 13:17:09 | Display   | 7 Timeout | •         |
|                       |                     |           |           |           |

Figure 17.16

Click on the **Program Upgrade (USB)** button, and the upgrade file **Icupdate.Icp** will be copied to the HMI.

Use the system function prog\_upgrade.
 During the interface configuration, you can call directly the system function prog\_upgrade to copy the upgrade file lcupdate.lcp from the flash drive to the HMI.

# 17.11 System Setting Window

EASY allows you to configure the basic HMI system parameters, such as those related to the network card and the touch screen, in the **System Setting** window.

To see the **System Setting** window, use one of the following two ways:

- Press down in sequence the top left corner, the top right corner, and then the bottom left corner of the HMI.
- Call the system function hmi\_sys\_set\_wnd during the interface configuration.

The **System Setting** window is shown as Figure 17.17.
| Network 1             |                     | Network 2                    |  |
|-----------------------|---------------------|------------------------------|--|
| IP: 19                | 2 . 168 . 0 . 10    | IP: 192 . 168 . 0 . 10       |  |
| Netmask: 25           | 5 . 255 . 255 . 0   | Netmask: 255 . 255 . 255 . 0 |  |
| Route: 19             | 2 . 168 . 0 . 1     | Route: 192 . 168 . 0 . 1     |  |
|                       | Display             | Serial                       |  |
| Brightness            | 100 %               | COM2: 🔿 RS232 🔴 RS485        |  |
| ScreenSaver<br>Delay: | 0 Second (0         | COM3: 🔿 RS232 🔶 RS485        |  |
| Time                  | 2009-07-09 13:17:09 | Display Timeout              |  |
|                       |                     |                              |  |

Figure 17.17

The **System Setting** window allows you to achieve the following four functions.

#### 17.11.1 Setting Parameters

You can modify all the parameters listed in the **System Setting** window. Click on **Save Settings**, and all the modified values will be saved to the system.

You can modify the following parameters:

#### 1. Network Card Settings

The network card settings cover two network cards: **Network Card 1** and **Network Card 2**. Depending on the model of the HMI, some HMIs might have only one network port. For these HMIs, you need only to configure settings for **Network Card 1**. For the HMIs which have two network ports, you need to configure settings for both of them.

The network card settings include the following parameters:

- **IP Address**: specifies the IP address of the network card.
- **Subnet Mask**: specifies the subnet mask of the network where the network card is configured.
- **Default Route**: specifies the default route of the network where the network card is configured.

#### 2. Display Settings

The display settings include the following parameters:

• Screen Brightness: sets the brightness level of the touch screen.

Screensaver Delay: defines the delay time of the screensaver.
 If you do not do any operations on the HMI after the defined delay time period, the sysem will enable the screensaver.
 If you set this parameter to 0, the screensaver will be disabled.

#### 3. Serial Port Settings

Depending on the model of the HMI, some HMIs provide 3 serial ports, among which COM1 is a dedicated RS232 serial port, while COM2 and COM3 work as both RS232 and RS485 serial ports. You can choose whether to have COM2 and COM3 work as RS232 or RS485 serial ports.

#### 4. Time Settings

In the Time Settings part, you can set the system time of the HMI.

#### 5. Timeout Window Display Settings

As described in a previous section, you can configure links through the **Device Configuration** node in the **Project Manager** window. If the communication on one link stops, the **Communication Timeout** window will be displayed by default, as shown in Figure 17.18.





Click on 😾 behind **Timeout Window Display** to configure whether to display the

**Communication Timeout** window: If you set it to red as , the window will be displayed; if you set it to white as , the window will not be displayed.

#### 17.11.2 Adjusting the Touch Screen

In the **System Setting** window as shown in Figure 17.17, click on the **Adjust Touch Screen** button, and you will see the touch screen adjustment interface. You can see a cross sign + on the top left corner, top right corner, bottom left corner, bottom right corner, and the middle of the interface. You can click on the middle point of each + to adjust the touch screen.

17.11.3 Program Upgrade (Through the USB Port)

Click on the Program Upgrade (USB) button in the System Setting window as

shown in Figure 17.17, and you can download the project upgrade file to the HMI from the flash drive. For more details, see section 17.10 Downloading Projects to Flash Drive.

### 17.11.4 System Restart

To restart the HMI system, click on the **System Restart** button in the **System Setting** window as shown in Figure 17.17.

# Chapter 18 Gallery Controls

### 18.1 Overview

EASY provides a control gallery with various powerful control components. They can be used to easily and vividly show the control procedure and process according to the requirements of various projects.

To add a control component from the gallery, do as follows:

1) Click on the **Gallery** button in the toolset on the left side of the **Interface** 

**Editor** window, and you will see the dialog box **Select from Gallery** as shown in Figure 18.1.

| Select Widget from )                                                                                                                                                   | Library |        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--|
| Clock<br>Digital LED<br>Electric symbol<br>Indicator light<br>Line flow pipe<br>Motor<br>Panel<br>Pipe<br>Pump<br>Reactor<br>Switch<br>Transport<br>Valve<br>X_Y curve |         |        |  |
| 2                                                                                                                                                                      |         | Lancel |  |



- 2) Click on the graphic component you need, and click on OK.
- Move the cursor to the editing area on the right side of the window, and you can see the cursor in the shape of a cross.
- 4) Drag the cursor, and you can see the selected component is displayed.

### 18.2 X\_Y Curve

#### 18.2.1 Overview

In the **Select from Gallery** dialog box, click on the **X\_Y Curve** component and move the cursor to the editing area on the right side of the window, and you can see the cursor become a cross. Grag the mouse to draw a rectangle, and the X\_Y curve will be displayed within this rectangle, as shown in Figure 18.2.



In the middle of the displayed X\_Y curve component is the drawing area with gridlines. The X and Y curves will be drawn within this drawing area: The X-axis will be on the left and the Y-axis at the bottom. Select the X\_Y curve component, and you will see 8 small rectangles on the four sides. You can use these 8 small rectangles to move or resize the component.

The gridlines in the drawing area are composed of two types of dividing lines: the ones vertical to the X-axis and the ones vertical to the Y-axis. You can set the number of dividing lines at each direction. For example, if you set the number of vertical lines to 5, then the whole drawing area will be divided into 6 identical areas by the 5 vertical lines.

The X\_Y curve is different from the real-time trend curve as follows:

• Real-Time Trend Curve: The X-axis is time and the Y-axis is variable. Th real-time trend curve shows the change tendency of the variable against the change of time.

• X\_Y Curve: Both the X-axis and the Y-axis are variables. The X\_Y curve shows the change tendancy of one variable against the change of the other.

#### 18.2.2 Properties of the X\_Y Trend Curve

After you draw an X\_Y trend curve, select the curve with a left click, the **Property List** pane will be displayed on the right side of the editing area listing all the properties of this

X\_Y curve.

The properties of the X\_Y curve are composed of the following five property nodes, as shown in Figure 18.3:

- Basic Properties
- Events
- Initial X\_Y Trend Curve Properties
- X\_Y Trend Curved Line Properties
- X\_Y Trend Indicator Line Properties

| Pro      | operty X                       |
|----------|--------------------------------|
| ×        | ycurve4 🗾                      |
| +        | Basic properties               |
| +        | Event                          |
| +        | X_Y curve initial properties   |
| +        | X_Y curve properties           |
| +        | X_Y curve indicator properties |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
|          |                                |
| v        | V curue proportion             |
| х_<br>Х_ | Y curve properties             |
|          | . , ,                          |



For more details on basic properties, see section 5.3.3 Basic Properties. For more details on events, see section 5.3.5 Events.

#### 18.2.2.1 Initial X\_Y Trend Curve Properties

An X\_Y trend curve control can display curves for multiple data. This section

describes the common properties of all the  $X_Y$  trend curves.

| Minimum<br>X-axis ValueValue of startpoint on the X-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve vertically.Maximum<br>X-axis ValueValue of the endpoint on the X-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve vertically.Minimum<br>Y-axis ValueValue of the startpoint on the Y-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve vertically.Maximum<br>Number of<br>PointsValue of the endpoint on the Y-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve horizontally.Number of<br>Displayed<br>PointsMaximum number of data points<br>distributed horizontally across the curve.No dynamic properties.Number of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.The return value is an integer.<br>This property, together with the<br><b>Maximum Number of Data</b><br><b>Points</b> property, zoom the<br>curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color of<br>CurvesColor of the dividing lines vertical to the<br>Y-axis.The expression of th                                                              | Property       | Description                                  | Remarks on Dynamic<br>Properties    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------|-------------------------------------|--|
| X-axis ValueValue of startpoint on the X-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve vertically.Maximum<br>Y-axis ValueValue of the endpoint on the X-axis.The return value is numeric.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minimum        |                                              |                                     |  |
| Maximum<br>X-axis ValueValue of the endpoint on the X-axis.Charling these two values will<br>zoom the curve vertically.Minimum<br>Y-axis ValueValue of the startpoint on the Y-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve horizontally.Maximum<br>Y-axis ValueValue of the endpoint on the Y-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve horizontally.Maximum<br>Number of<br>Displayed<br>PointsMaximum number of data points<br>distributed horizontally across the curve.No dynamic properties.Number of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.The return value is an integer.<br>This property, together with the<br>Maximum Number of Data<br>Points property, zoom the<br>curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>Color of<br>Vertical LinesBackground color of the curve drawing area<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>vaxis.The return value is an integer.Color of<br>Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>vaxis.The expression of the dynamic<br>script returns t                                                                        | X-axis Value   | Value of startpoint on the X-axis.           | The return value is numeric.        |  |
| X-axis ValueValue of the endpoint on the X-axis.Zoom the curve ventically.Minimum<br>Y-axis ValueValue of the startpoint on the Y-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve horizontally.Maximum<br>Y-axis ValueMaximum number of data points<br>distributed horizontally across the curve.No dynamic properties.Number of<br>Displayed<br>PointsMumber of the data points displayed<br>horizontally across the curve.No dynamic properties.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>drawing area of the control and the left or<br>right margin.The return value is an integer.<br>The return value is an integer.Vertical<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>bottom margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesSackgroun color of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesSoch of the dividing lines vertical to the<br>drawing area of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesSoch of the dividing lines vertical to the<br>drawing area of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>v-axis.The expression of the dynamic<br><td>Maximum</td> <td>Value of the endpoint on the V avia</td> <td>changing these two values will</td> | Maximum        | Value of the endpoint on the V avia          | changing these two values will      |  |
| Minimum<br>Y-axis ValueValue of the startpoint on the Y-axis.The return value is numeric.<br>Changing these two values will<br>zoom the curve horizontally.Maximum<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X-axis Value   |                                              | 200m the curve vertically.          |  |
| Y-axis ValueValue of the data point of the Y-axis.Changing these two values will<br>zoom the curve horizontally.Maximum<br>Y-axis ValueWalue of the endpoint on the Y-axis.Changing these two values will<br>zoom the curve horizontally.Maximum<br>Number of<br>PointsMaximum number of data points<br>distributed horizontally across the curve.No dynamic properties.Number of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.No dynamic properties.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control.The return value is an integer.Background<br>Color of<br>Color ofBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color ofColor of the dividing lines vertical to the<br>drawing area of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>drawing area of the control.The return value is an integer.SpacingBackground color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color ofColor of the dividing lines vertical to the<br>V-axis.The exp                                                                                                                                        | Minimum        | Value of the startpoint on the Y-axis        | The return value is numeric         |  |
| Maximum<br>Y-axis ValueValue of the endpoint on the Y-axis.Zoom the curve horizontally.Maximum<br>Number of<br>PointsMaximum number of data points<br>distributed horizontally across the curve.No dynamic properties.Number of<br>Displayed<br>PointsMumber of the data points displayed<br>horizontally across the curve.The return value is an integer.<br>This property, together with the<br>Maximum Number of Data<br>Points property, zoom the<br>curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingNumber of the dividing lines vertical to the<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Background<br>Color of<br>Color ofBackground color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.Vertical<br>Color of<br>Color of<br>Vertical LinesSpacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>Color of<br>Vertical LinesBackground color of the curve drawing area<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The expression of the dynamic<br>script returns the RGB values of<br>the color.                                                                                                                                         | Y-axis Value   |                                              | Changing these two values will      |  |
| Y-axis ValueMaximum<br>Maximum<br>Number of<br>PointsMaximum number of data points<br>distributed horizontally across the curve.No dynamic properties.Number of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.The return value is an integer.<br>This property, together with the<br>Maximum Number of Data<br>Points property, zoom the<br>curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Horizontal<br>SpacingNumber of the dividing lines vertical to the<br>traving area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>Color of<br>Color ofBackground color of the curve drawing area<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum        | Value of the endpoint on the Y-axis.         | zoom the curve horizontally.        |  |
| Maximum<br>Number of<br>PointsMaximum number of data points<br>distributed horizontally across the curve.No dynamic properties.Number of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.The return value is an integer.<br>This property, together with the<br><b>Maximum Number of Data</b><br>Points property, zoom the<br>curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>Color of<br>CurvesBackground color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.Background<br>Color of<br>Vertical LinesBackground color of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.Background<br>Color of<br>Vertical LinesBackgroun color of the curve drawing area<br>of the control.The expression of the dynamic<br>script returns the RGB values of<br>the color.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The color.                                                                                                                                                | Y-axis Value   |                                              | ,                                   |  |
| Number of<br>Pointsdistributed horizontally across the curve.No dynamic properties.Number of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.The return value is an integer.<br>This property, together with the<br><b>Maximum Number of Data</b><br><b>Points</b> Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>Color of<br>CurvesBackground color of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Y-axis.The expression of the dynamic<br>script returns the RGB values of<br>the color.                                                                                                                                                                                                                                                                                                                                  | Maximum        | Maximum number of data points                |                                     |  |
| PointsPointsThe return value is an integer.<br>This property, together with the<br>Maximum Number of Data<br>PointsNumber of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.The return value is an integer.<br>This property, together with the<br>Maximum Number of Data<br>Points property, zoom the<br>curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of      | distributed horizontally across the curve.   | No dynamic properties.              |  |
| Number of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color ofColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Points         |                                              | The return value is an integer      |  |
| Number of<br>Displayed<br>PointsNumber of the data points displayed<br>horizontally across the curve.Maximum Number of Data<br>Points property, zoom the<br>curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the control.The return value is an integer.Background<br>Color ofColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Number of      |                                              | This property together with the     |  |
| Descriptionhorizontally across the curve.International retained of the data<br>Points property, zoom the<br>curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the left or<br>bottom margin.The return value is an integer.Background<br>Color of<br>CurvesBackground color of the control.The return value is an integer.Background<br>Color ofColor of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.Background<br>Color of<br>Vertical LinesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>V-axis.The expression of the dynamic<br>script returns the RGB values of<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Displayed      | Number of the data points displayed          | Maximum Number of Data              |  |
| Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.curve horizontally.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Background<br>Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>of the control.The return value is an integer.Background<br>Color of<br>Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Vertical LinesThe expression of the dynamic<br>script returns the RGB values of<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Points         | horizontally across the curve.               | Points property. zoom the           |  |
| Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>Y-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the left or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>y-axis.The return value is an integer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                              | curve horizontally.                 |  |
| Vertical LinesY-axis.The return value is an integer.Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The expression of the dynamic<br>script returns the RGB values of<br>the color.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Vertical LinesColor of the dividing lines vertical to theColor of<br>Vertical LinesColor of the dividing lines vertical to theThe color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of      | Number of the dividing lines vertical to the | The set of a local state of the set |  |
| Number of<br>Vertical LinesNumber of the dividing lines vertical to the<br>X-axis.The return value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The expression of the dynamic<br>script returns the RGB values of<br>the color.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Vertical LinesColor of the dividing lines vertical to the<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vertical Lines | Y-axis.                                      | i në return value is an integer.    |  |
| Vertical LinesX-axis.Interform value is an integer.Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color ofBackgroun color of the curve drawing area<br>of the control.The expression of the dynamic<br>script returns the RGB values of<br>the color.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Vertical LinesThe color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of      | Number of the dividing lines vertical to the | The return value is an integer      |  |
| Horizontal<br>SpacingLeft or right spacing between the curve<br>drawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Y-axis.The expression of the RGB values of<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vertical Lines | X-axis.                                      | The return value is an integer.     |  |
| Spacingdrawing area of the control and the left or<br>right margin.The return value is an integer.Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Vertical LinesThe return value is an integer.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Vertical LinesThe expression of the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Horizontal     | Left or right spacing between the curve      |                                     |  |
| Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The expression of the dynamic<br>script returns the RGB values of<br>the color.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Color ofColor of the dividing lines vertical to the<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spacing        | drawing area of the control and the left or  | The return value is an integer.     |  |
| Vertical<br>SpacingTop or bottom spacing between the curve<br>drawing area of the control and the top or<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.The return value is an integer.Background<br>Color of<br>CurvesBackgroun color of the control.The return value is an integer.Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The expression of the dynamicColor of<br>Vertical LinesColor of the dividing lines vertical to the<br>Y-axis.The color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | right margin.                                |                                     |  |
| Spacingdrawing area of the control and the top of<br>bottom margin.The return value is an integer.Background<br>ColorBackground color of the control.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The expression of the dynamicColor of<br>Vertical LinesColor of the dividing lines vertical to the<br>Y-axis.The expression of the RGB values of<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vertical       | lop or bottom spacing between the curve      |                                     |  |
| Background<br>ColorBackground color of the control.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Y-axis.Color of<br>Color ofColor of the dividing lines vertical to the<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spacing        | bottom margin                                | The return value is an integer.     |  |
| DatisfyroundBackground color of the control.ColorBackground color of the control.Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.Color of<br>Vertical LinesColor of the dividing lines vertical to the<br>Y-axis.Color of<br>Color ofColor of the dividing lines vertical to the<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Background     |                                              |                                     |  |
| Background<br>Color of<br>CurvesBackgroun color of the curve drawing area<br>of the control.The expression of the dynamicColor of<br>Vertical LinesColor of the dividing lines vertical to the<br>Y-axis.Script returns the RGB values of<br>the color.Color of<br>Color ofColor of the dividing lines vertical to the<br>Color ofScript returns the RGB values of<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Color          | Background color of the control.             |                                     |  |
| Backgroun color of the curve drawing area<br>of the control.The expression of the dynamicColor ofColor of the dividing lines vertical to the<br>Vertical LinesScript returns the RGB values of<br>the color.Color ofColor of the dividing lines vertical to the<br>Color ofScript returns the RGB values of<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Background     |                                              |                                     |  |
| Curvesof the control.The expression of the dynamicColor ofColor of the dividing lines vertical to the<br>Y-axis.script returns the RGB values of<br>the color.Color ofColor of the dividing lines vertical to the<br>Color ofcolor of the dividing lines vertical to the<br>the color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Color of       | Backgroun color of the curve drawing area    |                                     |  |
| Color ofColor of the dividing lines vertical to the<br>Y-axis.script returns the RGB values of<br>the color.Color ofColor of the dividing lines vertical to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Curves         | of the control.                              | The expression of the dynamic       |  |
| Vertical Lines     Y-axis.     the color.       Color of     Color of the dividing lines vertical to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Color of       | Color of the dividing lines vertical to the  | script returns the RGB values of    |  |
| Color of Color of the dividing lines vertical to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vertical Lines | Y-axis.                                      | the color.                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Color of       | Color of the dividing lines vertical to the  |                                     |  |
| Horizontal X-axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Horizontal     | X-axis.                                      |                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lines          |                                              |                                     |  |
| Iext Color     Color of the text beside the X- and Y- axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Text Color     | Color of the text beside the X- and Y- axis. |                                     |  |
| Curved lines displayed: 16 the most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To redmun      | inumber of the curved lines to be            | No dynamic properties.              |  |
| Data Source Data source of the trend curve: No dynamic properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data Source    | Data source of the trend curve:              | No dynamic properties               |  |

| Droportu      | Description                                                                                                                                                                                             | Remarks on Dynamic                                                                   |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Property      | Description                                                                                                                                                                                             | Properties                                                                           |
|               | • Real-Time Memory Record: The data used in the trend curve comes from                                                                                                                                  |                                                                                      |
|               | the current values of the data in a real-time data record.                                                                                                                                              |                                                                                      |
|               | • File: If you save a real-time data record to a file, you can set the data source to File. In this case, the curve is a saved trend curve.                                                             |                                                                                      |
| Trend Name    | Valid when <b>Data Source</b> is set to <b>Real-Time Memory Record</b> .<br>The trend name is actually the name of a real-time data record. This name must be defined in a real-time data record in the | No dynamic properties.                                                               |
|               | Project Manager window.                                                                                                                                                                                 |                                                                                      |
| File Location | Valid when <b>Data Source</b> is set to <b>File</b> .<br>This property defines where the real-time<br>data record is kept, internal flash or the CF<br>card.                                            | The return value is 0 or 1:<br>• 0: Internal flash<br>• 1: CF card                   |
| File Name     | Valid when <b>Data Source</b> is set to <b>File</b> .<br>This property defines the name of the<br>real-time data record file.                                                                           | The return value is a string with<br>the name of the real-time record<br>file.       |
| Start Point   | Valid when <b>Data Source</b> is set to <b>File</b> .<br>This property defines from which data<br>point of the record the curve is to display.                                                          | The return value is int.<br>Changing this value will move<br>the curve horizontally. |

### 18.2.2.2 X\_Y Trend Curved Line Properties

You can configure data and color properties for each curve, and you can configure for up to 16 curves.

| Broportios | Description                                                                                                                                                                                                                | Remarks on                                                                                                  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Flopentes  | Description                                                                                                                                                                                                                | <b>Dynamic Properties</b>                                                                                   |
| Variable X | Name of the variable corresponding to the X-axis of<br>the trend curve.<br>This variable must be defined in the real-time data<br>record.<br>If you do not specify this variable, then the curve will<br>not be displayed. | The return value is a string with the name of the data displayed by the curve.<br>If the returned string is |
| Variable Y | Name of the variable corresponding to the Y-axis of the trend curve.<br>This variable must be defined in the real-time data                                                                                                | then the curve will no be displayed.                                                                        |

|             | record.                                                  |       |                 |      |
|-------------|----------------------------------------------------------|-------|-----------------|------|
|             | If you do not specify this variable, then the curve will |       |                 |      |
|             | not be displayed.                                        |       |                 |      |
| Curve Color | Color of the trend out o                                 | The   | expression      | or   |
|             |                                                          | dynar | nic script retu | irns |
|             |                                                          |       | GB values of    | the  |
|             |                                                          |       |                 |      |

### 18.2.2.3 X\_Y Trend Indicator Line Properties

| Properties                 | Description                                                                                | Remarks on                                                             |
|----------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Allow<br>Indicator Line    | Defines whether the control allows indicator lines.                                        | The return value is int:<br>• 0: Not Allow<br>• Non 0: Allow           |
| Color of<br>Indicator Line | Color of the indicator lines.                                                              | The expression or dynamic script returns the RGB values of the color.  |
| X Value<br>Variable        | The X-axis data value of the curve the indicator line points to is saved to this variable. | The return value is a string with the name of the time variable.       |
| Y Value<br>Variable        | The Y-axis data value of the curve the indicator line points to is saved to this variable. | The return value is a string with the name of the data value variable. |

# 18.3 Pump

| Properties         | Description                               | Remarks on Dynamic<br>Properties |
|--------------------|-------------------------------------------|----------------------------------|
| Pump Start Color   | Defines the color of the indicator light. | The expression or dynamic        |
| General Pump Color | Defines the color of the whole pump.      | of the color.                    |

# 18.4 Conveying Belt

| Properties        | Description                           | Remarks on Dynamic<br>Properties |
|-------------------|---------------------------------------|----------------------------------|
| Wheel Color       | Defines the color of the wheel.       | The expression or dynamic        |
| Transmitter Color | Defines the color of the transmitter. | of the color.                    |

### 18.5 Valve

| Properties        | Description                                   | Remarks on Dynamic<br>Properties |
|-------------------|-----------------------------------------------|----------------------------------|
| Valve Start Color | Defines the color for the start of the valve. | The expression or dynamic        |
| Valve End Color   | Defines the color for the end of the valve.   | of the color.                    |

### 18.6 Reactor

| Properties               | Description                     | Remarks on Dynamic<br>Properties |
|--------------------------|---------------------------------|----------------------------------|
| Popetor Rody Start Color | Defines the color for the start |                                  |
| Reactor Body Start Color | of the reactor body.            |                                  |
| Popetor Rody End Color   | Defines the color for the end   |                                  |
| Reactor Body End Color   | of the reactor body.            |                                  |
| Popetor Log Start Color  | Defines the color for the start | The expression or dynamic        |
| Reactor Leg Start Color  | of the reactor leg.             | corint roturns the PCP values    |
| Poactor Log End Color    | Defines the color for the end   | of the color                     |
| Reactor Leg End Color    | of the reactor leg.             |                                  |
| Pagetor East Start Calor | Defines the color for the start |                                  |
| Reactor Foot Start Color | of the reactor foot.            |                                  |
| Pagetor East End Color   | Defines the color for the end   |                                  |
|                          | of the reactor foot.            |                                  |

# 18.7 Pipe

| Properties  | Description                                  | Remarks on Dynamic<br>Properties                                                                                                                                                         |
|-------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start Color | Defines the color for the start of the pipe. | The expression or dynamic                                                                                                                                                                |
| End Color   | Defines the color for the end of the pipe.   | of the color.                                                                                                                                                                            |
| Direction   | Defines the direction of the pipe.           | The expression or the dynamic script returns the value ranging from 1 to 4, which stand for Top Right, Bottom Right, Top Left, and Bottom Left from top to bottom in the drop-down list. |
| Pipe Width  | Defines the width of the pipe.               | The expression or dynamic script returns an int value, which is the width of the pipe.                                                                                                   |

## 18.8 Switch

| Properties          | Description                  | Remarks on Dynamic Properties        |
|---------------------|------------------------------|--------------------------------------|
| Variable Name       | Specifies the name of the    | No dynamia proportion                |
| Vallable Name       | associated variable.         | No dynamic properties.               |
| General Background  | Sets the general             |                                      |
| Color               | background color.            |                                      |
| Putton Pookaround   | Sets the background color    |                                      |
|                     | for the small buttons in the |                                      |
| COIOI               | middle.                      |                                      |
| Tan Duttan Chadau   | Sets the color of the top    |                                      |
| Color               | shadow for the small         |                                      |
| Color               | buttons in the middle.       | The expression or dynamic script     |
| Bottom Button       | Sets the color of the bottom | returns the RGB values of the color. |
| Shadow Color        | shadow for the small         |                                      |
|                     | buttons in the middle.       |                                      |
|                     | Sets the color of the top    |                                      |
| Top Shadow Color    | shadow for the whole         |                                      |
|                     | switch.                      |                                      |
| Pottom Shadow Color | Sets the color of the bottom |                                      |
|                     | shadow for the whole         |                                      |

|                     | switch.                           |                                                                                                                                                             |
|---------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Button Direction    | Sets the direction of the button. | The expression or dynamic script<br>returns the value 0 or 1, which stand<br>for Bounced Up and Pressed Down<br>from top to bottom in the drop-down<br>list |
|                     | Sets the shadow width for         |                                                                                                                                                             |
| Shadow Width        | the whole switch.                 | The expression or dynamic script                                                                                                                            |
| Button Shadow Width | Sets the shadow width for         | shadow                                                                                                                                                      |
|                     | the button.                       |                                                                                                                                                             |

## 18.9 Motor

| Property                 | Description                                         | Remarks on Dynamic Properties                                         |
|--------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|
| Motor Indicator<br>Color | Sets the color of the indicator light of the motor. | The expression or dynamic script returns the RGB values of the color. |

### 18.10 Panel

| Properties               | Description                                                      | Remarks on Dynamic<br>Properties                                                                                                                      |
|--------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| External Panel<br>Status | Defines the status of the external panel,<br>Raised or Embedded. | The expression or dynamic script<br>returns the value 0 or 1, which<br>stands for Raised and<br>Embedded from top to bottom in<br>the drop-down list. |
| External Panel           | Sets the highlight color for the external                        |                                                                                                                                                       |
| Highlight Color          | panel.                                                           | -                                                                                                                                                     |
| External Panel           | Sets the shadow color for the external                           |                                                                                                                                                       |
| Shadow Color             | panel.                                                           |                                                                                                                                                       |
| Internal Panel           | Sets the highlight color for the internal                        | The expression or dynamic script                                                                                                                      |
| Highlight Color          | panel.                                                           | roturns the PCP values of the                                                                                                                         |
| Internal Panel           | Sets the shadow color for the internal                           | color                                                                                                                                                 |
| Shadow Color             | panel.                                                           |                                                                                                                                                       |
| Internal Panel           | Sate the filling color for the internal papel                    |                                                                                                                                                       |
| Filling Color            | Sets the ming color for the internal pariet.                     |                                                                                                                                                       |
| External Panel           | Sets the filling color for the external                          |                                                                                                                                                       |
| Filling Color            | panel.                                                           |                                                                                                                                                       |

|                |                                           | The expression or dynamic script   |
|----------------|-------------------------------------------|------------------------------------|
|                |                                           | returns the value ranging from 0   |
| Internal Panel | Defines the status of the internal panel, | to 2, which stand for Raised,      |
| Status         | Raised, Embedded, or Transparent.         | Embedded, and Transparent          |
|                |                                           | from top to bottom in the          |
|                |                                           | drop-down list.                    |
|                |                                           | The expression or dynamic script   |
| Panel Space    | Sets the space between the internal and   | returns an int value, which is the |
|                | external panels.                          | space between the internal and     |
|                |                                           | external panels.                   |

# 18.11 Soft Keyboard

| Properties    | Description                                      | Remarks on Dynamic Properties                             |
|---------------|--------------------------------------------------|-----------------------------------------------------------|
| Background    | Sets the background color of                     |                                                           |
| Color         | the keyboard.                                    |                                                           |
| Toxt Color    | Sets the color of the keyboard                   | The expression or dynamic script returns the              |
| Text Color    | text.                                            | RGB values of the color.                                  |
| Koy Color     | Sets the color of the keys on                    |                                                           |
| Key Color     | the keyboard.                                    |                                                           |
|               |                                                  | The expression or dynamic script returns an               |
| Key Font Size | Sets the font size for the text on the keyboard. | int value:                                                |
|               |                                                  | 0: Default font size                                      |
|               |                                                  | <ul> <li>Other int: Font size specifies by the</li> </ul> |
|               |                                                  | returned int value                                        |

## 18.12 Clock

### 18.12.1 Properties of the Panel Clock

| Properties  | Description                      | Remarks on Dynamic Properties            |
|-------------|----------------------------------|------------------------------------------|
| Hour Hand   | Sata the color of the hour hand  |                                          |
| Color       | Sets the color of the hour hand. |                                          |
| Minute Hand | Sets the color of the minute     |                                          |
| Color       | hand.                            |                                          |
| Second Hand | Sets the color of the second     | The expression or dynamic script returns |
| Color       | hand.                            | the RGB values of the color.             |
| Disk        | Sate the background color of the |                                          |
| Background  |                                  |                                          |
| Color       |                                  |                                          |
| Arc Color   | Sets the color of the frame arc. |                                          |

| Arc Width Sets the width of the frame are | Sets the width of the frame are | The expression or dynamic script returns     |
|-------------------------------------------|---------------------------------|----------------------------------------------|
|                                           |                                 | an int, which is the width of the outer arc. |

## 18.12.2 Properties of the Digital Clock

| Properties          | Description                              | Remarks on Dynamic Properties                 |
|---------------------|------------------------------------------|-----------------------------------------------|
| Background          | Sate the background color                |                                               |
| Color               | Sets the background color.               |                                               |
| Digital Display     | Sets the color of the digital            | The every sector of dynamic period returns    |
| Color               | display.                                 | the PCP values of the color                   |
| Digital             | Sata the color of the digital            |                                               |
| Background          | Sets the color of the digital            |                                               |
| Color               | Dackground.                              | The expression or dynamic script returns      |
| Frame Start Color   | Sets the color for the start of          | the PCB values of the color                   |
|                     | the frame.                               |                                               |
| Frame End Color the | Sets the color for the end of            |                                               |
|                     | the frame.                               |                                               |
|                     |                                          | The expression or dynamic script returns      |
| LED Width           | Sets the width of the LED.               | an int value, which is the width of the LED   |
|                     |                                          | on the clock.                                 |
|                     | Sets the width of the edge of the clock. | The expression or dynamic script returns      |
| Edge Width          |                                          | an int value, which is the width of the edge  |
|                     |                                          | of the clock.                                 |
|                     | Sats the width of the outer              | The expression or dynamic script returns      |
| Rim Width           | rim of the clock.                        | an int value, which is the width of the outer |
|                     |                                          | rim of the clock.                             |

## 18.13 Digitron

| Properties        | Description                     | Remarks on Dynamic Properties            |
|-------------------|---------------------------------|------------------------------------------|
| Background        | Sets the background color for   |                                          |
| Color             | the control.                    |                                          |
| Digital Display   | Sets the color of the           |                                          |
| Color             | displayed digits.               | The everyonic or dynamic periot returns  |
| Digit Background  | Sets the background color of    | the PCP values of the color              |
| Color             | the displayed digits.           |                                          |
| Fromo Stort Color | Sets the color for the start of |                                          |
|                   | the frame.                      |                                          |
| Fromo End Color   | Sets the color for the end of   |                                          |
|                   | the frame.                      |                                          |
| Value             | Sets the data value.            | The expression or dynamic script returns |

|                 |                                    | a float or int value, which is the displayed |
|-----------------|------------------------------------|----------------------------------------------|
|                 |                                    | value of the digitron.                       |
|                 | Sata the number of digits for      | The expression or dynamic script returns     |
| Integral Digits | the integer                        | an int value, which is the number of digits  |
|                 | the integer.                       | of the integer.                              |
|                 |                                    | The expression or dynamic script returns     |
| LED Width       | Sets the width of the LED.         | an int value, which is the width of the      |
|                 |                                    | LED.                                         |
| Decimal Digits  | Sets the number of decimal digits. | The expression or dynamic script returns     |
|                 |                                    | an int value, which is the number of         |
|                 |                                    | decimal digits.                              |
|                 |                                    | The expression or dynamic script returns     |
| Edge Width      | Sets the width of the edge.        | an int value, which is the width of the      |
|                 |                                    | edge.                                        |
|                 |                                    | The expression or dynamic script returns     |
| Frame width     | Sets the width of the frame.       | an int value, which is the width of the      |
|                 |                                    | frame.                                       |

## 18.14 File List

| Droportion    | Description                              | Remarks on Dynamic                 |  |  |
|---------------|------------------------------------------|------------------------------------|--|--|
| Properties    | Description                              | Properties                         |  |  |
|               |                                          | The expression or dynamic          |  |  |
| Number of     | Defines the number of rows to be         | script returns an int value, which |  |  |
| Rows          | displayed in the file saved in the HMI.  | is the number of rows to be        |  |  |
|               |                                          | displayed in the file.             |  |  |
|               |                                          | The expression or dynamic          |  |  |
| Redrawing     | Defines regarding the update of the file | script returns an bit value:       |  |  |
| Variable      | contents.                                | 0: No action                       |  |  |
|               |                                          | 1: Refresh                         |  |  |
|               | Files can be saved in the following      |                                    |  |  |
|               | locations:                               | The expression or dynamic          |  |  |
|               | Internal Flash Historical Data           | script returns an int value:       |  |  |
|               | Internal Flash User Data                 | 0: FlashL Historical Data          |  |  |
| File Location | CF Card User Data                        | • 1: Internal FlashL User          |  |  |
|               | CF Card Historical Data                  | 2: CF Card User Data               |  |  |
|               | USB Flash Drive                          | • 3: CF Card Historical Data       |  |  |
|               | The designer can set the source of the   | • 4: USB Flash Drive               |  |  |
|               | file displayed in the file list.         |                                    |  |  |
| List File     | Corresponds to the name of the           | The expression or dynamic          |  |  |

| Properties       | Description                               | Remarks on Dynamic                |
|------------------|-------------------------------------------|-----------------------------------|
|                  |                                           | Properties                        |
|                  | associated file variable.                 | script returns a string, which is |
|                  | For files of the universal class, you can | the type of the file name.        |
|                  | use the wildcard.                         |                                   |
| File Neme        | Defines the list of file names to be      | The expression or dynamic         |
|                  |                                           | script returns a string, which is |
| Variable         | displayed.                                | the file name.                    |
| List Item Height | Sets the height of each list item.        | No dynamic properties.            |

### 18.15 Meter

### 18.15.1 Disk Meter

| Properties      | Description                       | Remarks on Dynamic Properties            |  |  |  |
|-----------------|-----------------------------------|------------------------------------------|--|--|--|
|                 | Transparent: sets the             | The expression or dynamic script         |  |  |  |
|                 | background color to transparent.  | returns an int value:                    |  |  |  |
|                 | In this case, the set outer and   | • 0: The background color is set to      |  |  |  |
| Background      | inner background colors do not    | transparent. In this case, the set outer |  |  |  |
| Туре            | work.                             | and inner background colors do not       |  |  |  |
|                 | Non-Transparent: sets the         | work.                                    |  |  |  |
|                 | inner and outer background        | • 1: The inner and outer background      |  |  |  |
|                 | colors to different colors.       | colors are set to different colors.      |  |  |  |
| Drawing Type    | Two types of meter hands are      | No dynamic properties                    |  |  |  |
|                 | available: fast and normal.       |                                          |  |  |  |
| Number of       | Sets the number of secondary      | The expression or dynamic script         |  |  |  |
| Secondary       | scales                            | returns an int value, which is the       |  |  |  |
| Scales          |                                   | number of secondary scales.              |  |  |  |
| Inner           |                                   | The expression or dynamic script         |  |  |  |
| Background      | Sets the inner background color.  | returns the RGB values of the color.     |  |  |  |
| Color           |                                   |                                          |  |  |  |
| Outer           |                                   |                                          |  |  |  |
| Background      | Sets the outer background color.  |                                          |  |  |  |
| Color           |                                   |                                          |  |  |  |
| Scale Color     | Sets the color of the scale.      |                                          |  |  |  |
| Text Color      | Sets the color of the text.       |                                          |  |  |  |
| Arc Color       | Sets the color of the arc.        |                                          |  |  |  |
| Hand Color      | Sets the color of the meter hand. |                                          |  |  |  |
| Color of Normal | Sets the color of the normal      |                                          |  |  |  |
| Interval        | interval.                         |                                          |  |  |  |
| Color of        | Sets the color of the abnormal    |                                          |  |  |  |

| Abnormal<br>Interval                                  | interval.                               |                                                                                                                                  |  |
|-------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Color of<br>Warning<br>Interval                       | Sets the color of the warning interval. |                                                                                                                                  |  |
| Arc Width                                             | Sets the width of the disk arc.         | The expression or dynamic script returns an int value, which is the width of the disk arc.                                       |  |
| Start Angle                                           | Sets the start angle.                   | The expression or dynamic script<br>returns an int value, which is the start<br>point of the minimum value on the meter<br>disk. |  |
| End Angle                                             | Sets the end angle.                     | The expression or dynamic script<br>returns an int value, which is the start<br>point of the maximum value on the<br>meter disk. |  |
| Minimum Value                                         | Sets the minimum value.                 | The expression or dynamic script returns a float value, which is the minimum value.                                              |  |
| Maximum Value                                         | Sets the maximum value.                 | The expression or dynamic script returns a float value, which is the maximum value.                                              |  |
| Data Value                                            | Sets the data value.                    | The expression or dynamic script returns a float value, which sets the location of the hand.                                     |  |
| Normal,<br>Warning, and<br>Abnormal<br>Interval Range | Sets the range of each interval.        | The expression or dynamic script returns a float value, which defines the range of each interval.                                |  |

### 18.15.2 Scale Meter

| Properties | Description                                   | Remarks on Dynamic Properties            |  |  |
|------------|-----------------------------------------------|------------------------------------------|--|--|
|            | Transparent: sets the                         | The expression or dynamic script         |  |  |
|            | background color to transparent.              | returns an int value:                    |  |  |
|            | In this case, the set outer and               | • 0: The background color is set to      |  |  |
| Background | inner background colors do not                | transparent. In this case, the set outer |  |  |
| Туре       | work.                                         | and inner background colors do not       |  |  |
|            | <ul> <li>Non-Transparent: sets the</li> </ul> | work.                                    |  |  |
|            | inner and outer background                    | • 1: The inner and outer background      |  |  |
|            | colors to different colors.                   | colors are set to different colors.      |  |  |
|            | With Scale: displays the                      | No dynamia proportion                    |  |  |
| Scale Type | scale.                                        | No dynamic properties.                   |  |  |

| Properties                         | Description                                                                                                                                                                                                                                                                                                        | Remarks on Dynamic Properties                                                                       |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
|                                    | Without Scale: does not                                                                                                                                                                                                                                                                                            |                                                                                                     |  |  |
|                                    | display the scale.                                                                                                                                                                                                                                                                                                 |                                                                                                     |  |  |
| Data Bar<br>Direction              | <ul> <li>Vertical: displays the meter<br/>disk vertically.</li> <li>Horizontally: displays the<br/>meter disk horizontally.</li> </ul>                                                                                                                                                                             | The expression or dynamic script returns an int value, which is the number of the secondary scales. |  |  |
| Scale Location                     | <ul> <li>Left/Top: displays the meter<br/>disk to the left (with the data bar<br/>vertical) or to the top (with the<br/>data bar horizontal).</li> <li>Right/Bottom: displays the<br/>meter disk to the right (with the<br/>data bar vertical) or to the<br/>bottom (with the data bar<br/>horizontal).</li> </ul> | No dynamic properties.                                                                              |  |  |
| Number of                          | Sets the number of the primary                                                                                                                                                                                                                                                                                     | No dynamic properties.                                                                              |  |  |
| Primary Scales                     | scales.                                                                                                                                                                                                                                                                                                            |                                                                                                     |  |  |
| Number of                          | Sets the number of the                                                                                                                                                                                                                                                                                             | No dynamic properties.                                                                              |  |  |
| Secondary                          | secondary scales.                                                                                                                                                                                                                                                                                                  |                                                                                                     |  |  |
| Scales                             | -                                                                                                                                                                                                                                                                                                                  |                                                                                                     |  |  |
| Background<br>Color                | Sets the background color.                                                                                                                                                                                                                                                                                         |                                                                                                     |  |  |
| Scale Color                        | Sets the scale color.                                                                                                                                                                                                                                                                                              |                                                                                                     |  |  |
| Text Color                         | Sets the text color.                                                                                                                                                                                                                                                                                               |                                                                                                     |  |  |
| Background<br>Color of Data<br>Bar | Sets the background color of the data bar.                                                                                                                                                                                                                                                                         | The expression or dynamic script returns the RGB values of the color.                               |  |  |
| Filling Color of<br>Data Bar       | Sets the filling color of the data bar.                                                                                                                                                                                                                                                                            |                                                                                                     |  |  |
| Width of Data<br>Bar               | Sets the width of the data bar.                                                                                                                                                                                                                                                                                    |                                                                                                     |  |  |
| Minimum Value                      | Sets the minimum value.                                                                                                                                                                                                                                                                                            | The expression or dynamic script returns a float value, which is the minimum value.                 |  |  |
| Maximum Value                      | Sets the maximum value.                                                                                                                                                                                                                                                                                            | The expression or dynamic script returns a float value, which is the maximum value.                 |  |  |
| Data Value                         | Sets the data value.                                                                                                                                                                                                                                                                                               | The expression or dynamic script returns a float value, which sets the location of the hand.        |  |  |

# 18.16 Line Pipe Moving Control

| Properties        | Description                   | Remarks on Dynamic Properties                    |
|-------------------|-------------------------------|--------------------------------------------------|
| Start Color       | Sets the start color of the   |                                                  |
| Start Color       | pipe.                         | The expression or dynamic script returns         |
| End Color         | Sets the end color of the     |                                                  |
|                   | pipe.                         |                                                  |
|                   | Sets the color of the filling | The expression or dynamic script returns the     |
| Object            | object                        | RGB values of the color.                         |
| Object            |                               |                                                  |
|                   |                               | The expression or dynamic script returns an      |
| Length of Filling | Sets the length of the        | integer, which defines the length of the filling |
| Object            | filling object.               | object.                                          |
|                   |                               |                                                  |
| Moving            | Sets the moving direction     | The expression or dynamic script returns bit     |
| Direction         | to the left or to the right   | signal corresponding to 0 (Left) or 1 (Right) in |
| Direction         | to the left of to the right.  | the drop-down list.                              |
|                   | Sata the moving status        | The expression or dynamic script returns bit     |
| Moving Status     | Sets the moving status,       | signal corresponding to 0 (Fixed) or 1           |
|                   |                               | (Moving) in the drop-down list.                  |

## 18.17 Indicator

| Properties Description |                       | Remarks on Dynamic Properties            |  |
|------------------------|-----------------------|------------------------------------------|--|
| Color of               | Sets the color of the | The expression or dynamic parint returns |  |
| Indicator Light        | indicator light.      | The expression of dynamic script returns |  |
| Bass Color             | Sets the color of the | No dynamic properties.                   |  |
| Dase Color             | base.                 |                                          |  |

# **Chapter 19 System Variables**

EASY defines some internal data variables which are called EASY system variables. You can use these system variables directly during the interface configuration.

With these system variables, you can read or modify the internally-defined parameters in the system to realize some special functions.

This chapter describes all the system variables for your reference.

### 19.1 Configuring System Variables

The system variables are configured in the **Parameter** node in the **Project Manager** window, as shown in Figure 19.1.



Figure 19.1

#### 19.1.1 Adding a System Parameter

All the system parameters are defined internally in the system. Adding a system parameter is actually setting the initial value of a system parameter. All the system parameters have an initial value during the system development. Changing the initial value actually changes the value of the system parameter.

To add a system parameter, do as follows:

 Select the **Parameter** node with a left click, and you will see a window as shown in Figure 19.2.



Figure 19.2

2) In the parameter list on the right side of the window, right-click in the blank area, and you will see a right-click menu as shown in Figure 19.3.



Figure 19.3

3) Select **Add Data**, and you will see the **Parameter Configuration** dialog box as shown in Figure 19.4.

| Parameter Setting | × |
|-------------------|---|
| Data Setting      | 1 |
| Database Name:    |   |
| Realtime Data 🖉 🔎 |   |
| Initial Value:    |   |
|                   |   |
| 🖌 OK 🌋 Cancel     |   |

Figure 19.4

4) Select the database name and the real-time data name.

To select the database name and the real-time data name, click on the button

And you will see the **Browse Real-Time Database** window as shown in Figure 19.5. In this window, you can see that all the system variables in the system database node are managed through the browser. Each parameter is described in details.

| variable name  | dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | length                                                                                                                                                                                                                                                                                                                                                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logic True     | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logic False    | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logic And      | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logic Or       | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logic Xor      | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logic_Not      | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arithm Add     | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arithm_Sub     | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arithm_Mul     | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arithm_Div     | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Compare_More   | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Compare_More_E | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Compare_Less   | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Compare_Less_E | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Compare_Equal  | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Compare_Not    | uchar                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Double_Const_O | double                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HmiLoopCount   | ulong                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HideMainWindow | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CurDateTime    | ulong                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IoCycleTime    | ulong                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FbdCycleTime   | ulong                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PlcCycleTime   | ulong                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FbdEnable      | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PlcEnable      | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T T 1 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | variable name<br>Logic True<br>Logic False<br>Logic And<br>Logic Or<br>Logic Xor<br>Logic Xor<br>Logic Not<br>Arithm Add<br>Arithm Sub<br>Arithm Mul<br>Arithm Div<br>Compare More<br>Compare More<br>Compare More<br>Compare More<br>Compare Less<br>Compare Less<br>Compare Less<br>Compare Less<br>Compare Squal<br>Compare Not<br>Double Const O<br>HmiLoopCount<br>HideMainWindow<br>CurDateTime<br>FbdCycleTime<br>FbdCycleTime<br>FbdCycleTime<br>FbdEnable<br>F 2012 | <pre>variable name dat<br/>Logic_True bit<br/>Logic_False bit<br/>Logic_Or uchar<br/>Logic_Or uchar<br/>Logic_Not uchar<br/>Logic_Not uchar<br/>Arithm_Add uchar<br/>Arithm_Mul uchar<br/>Arithm_Div uchar<br/>Compare_More_E uchar<br/>Compare_More_E uchar<br/>Compare_Less_E uchar<br/>Compare_Less_E uchar<br/>Compare_Less_E uchar<br/>Compare_Less_E uchar<br/>Compare_More_Not<br/>Uchar<br/>Double_Const_O double<br/>MmiLoopCount ulong<br/>HideMainWindow bit<br/>CurDateTime ulong<br/>FbdCycleTime ulong<br/>FbdCycleTime ulong<br/>FloCgneTime ulong</pre> | variable namedatdescriptionLogic TruebitLogic FalsebitLogic CanducharLogic OrucharLogic NotucharLogic NotucharArithm AdducharArithm SubucharArithm MulucharCompare MoreucharCompare More LessucharCompare Less EucharCompare NotucharDouble ConstOdoubleMmiLoopCountulongHideMainWindowbitCurbateTimeulongFbdCycleTimeulongFbdZycleTimeulongFlocRnablebitFlocRnablebit | variable namedatdescriptionlengthLogic Truebit1Logic Falsebit1Logic Canduchar1Logic Coruchar1Logic Coruchar1Logic Xoruchar1Logic Notuchar1Arithm Adduchar1Arithm Subuchar1Arithm Muluchar1Compare Moreuchar1Compare Moreuchar1Compare More Euchar1Compare Lessuchar1Compare Roueuchar1Compare Less Euchar1Compare Notuchar1Double Const_Odouble8MmiLoopCountulong4HideMainWindowbit1CurDateTimeulong4FbdCycleTimeulong4FbdCycleTimeulong4FbdEnablebit1T. R. NN1Under11 |

Figure 19.5

5) Double-click on a system parameter, and the selected system parameter will be filled to the corresponding text box automatically, as shown in Figure 19.6.

| Parameter Settin       | ng                  | × |
|------------------------|---------------------|---|
| Data Setting           |                     |   |
| Database Name:         | hmi_system_set      |   |
| Realtime Data<br>Name: | secunty_level2_pass |   |
| Initial Value:         |                     |   |
|                        |                     |   |
|                        | Cancel              |   |



The parameter Initial Value defines the initial value of the system parameter

according to the meaning of the system parameter.

6) After all the system parameters are configured, click on **OK**.

The system parameter is configured (or added) successfully. You may add other system parameters in the same way.

After you configure all the related system parameters, you will see a window as shown in Figure 19.7.

The following sections of this chapter describe more details about the meaning of the system parameters.



Figure 19.7

### 19.2 System Variables for the Interface

| Database<br>Name | Variable Name | Data<br>Type | Default Value | Description                                                                                                                                  |
|------------------|---------------|--------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| system           | HmiLoopCount  | ulong        |               | Count value of how many<br>times the interface refreshes.<br>The value of this variable is<br>added 1 every time the<br>interface refreshes. |

| HideMainWindow    | bit   | <ul> <li>0: Simulated operation on PC</li> <li>1: Operation on the HMI</li> </ul> | <ul> <li>1: Menus in the target</li> <li>Windows window are hidden.</li> <li>0: Menus in the target</li> <li>Windows window are</li> <li>displayed.</li> </ul>                                                                         |
|-------------------|-------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HmiHeartbeat      | bit   |                                                                                   | Heartbeat of the HMI during<br>operation.<br>The value of this variable<br>switches between 0 and 1<br>repeatedly during the interface<br>refreshing.<br>The value of this variable<br>switches every time the<br>interface refreshes. |
| HmidbDefCycleTime | ulong | 500                                                                               | Cycle for the repeated interface refreshing (unit: ms).                                                                                                                                                                                |

# 19.3 System Variables for Device Configuration

| Database Name  | Variable Name       | Data<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                      |
|----------------|---------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| system         | loEnable            | bit          | 1                | <ul> <li>1: Device management<br/>enabled.</li> <li>0: Device management<br/>disabled.</li> </ul>                                                                                                                                                                                |
| hmi_system_set | link_timeout_wnd_on | bit          | 1                | <ul> <li>1: The system displays<br/>the Communication<br/>Timeout window<br/>automatically when<br/>communication timeout<br/>occurs.</li> <li>0: The system does not<br/>display the<br/>Communication Timeout<br/>window when<br/>communication timeout<br/>occurs.</li> </ul> |
|                | link_timeout_wnd_x  | short        | -1               | Value of the X-axis on the<br>top left corner of the<br><b>Communication Timeout</b><br>window.                                                                                                                                                                                  |
|                | link_timeout_wnd_y  | Short        | -1               | Value of the Y-axis on the top left corner of the                                                                                                                                                                                                                                |

| Database Name | Variable Name | Data<br>Type | Default<br>Value | Description                          |
|---------------|---------------|--------------|------------------|--------------------------------------|
|               |               |              |                  | <b>Communication Timeout</b> window. |

## 19.4 System Variables for Function Blocks

| Database<br>Name | Variable Name | Data<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                    |
|------------------|---------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | FbdEnable     | bit          | 1                | <ul> <li>1: Function block support enabled.</li> <li>0: Function block support disabled.</li> <li>In this case, none of the configured function blocks will be executed.</li> </ul>                                                                                            |
|                  | FbdCycleTime  | ulong        | 100              | Cycle for executing all function blocks (unit: ms).                                                                                                                                                                                                                            |
| system           | FbdHeartbeat  | bit          |                  | Heartbeat of the execution of function<br>blocks.<br>The value of this variable switches<br>between 0 and 1 repeatedly during<br>the running of the function blocks.<br>The value of this variable switches<br>every time when all function blocks<br>are executed in a cycle. |

# 19.5 System Variables for the Ladder Diagram

| Database<br>Name | Variable Name | Data<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                          |
|------------------|---------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | PlcEnable     | bit          | 1                | <ul><li> 1: Ladder diagram enabled.</li><li> 0: Ladder diagram disabled.</li></ul>                                                                                                                                                                                                   |
|                  | PlcCycleTime  | ulong        | 100              | Cycle for executing the ladder diagram (unit: ms).                                                                                                                                                                                                                                   |
| system           | PlcHeartbeat  | bit          |                  | Heartbeat of the ladder diagram<br>during its operation.<br>The value of this variable switches<br>between 0 and 1 repeatedly during<br>the operation of the ladder diagram.<br>The value of this variable switches<br>every time the ladder diagram is<br>executed for a new round. |

| Database Name  | Variable Name                                  | Data<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|------------------------------------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | cur_security_level                             | ushort       | 0                | Current security level of the system.                                                                                                                                                                                                                                                                                                                                                                                       |
| hmi_system_set | security_level1_pass~<br>security_level10_pass | string       | Blank            | Stands individually for the password of each security level from level 1 to level 10.<br>You can set the password of each security level according to your needs or requirements.<br>If you do not set the password of a security level or you leave it to blank, it means that this security level is not in use.<br>The password can be set to up to 20 characters (including the ending character <b>\0</b> of a string) |

# 19.6 System Variables for Access Management

## 19.7 System Variables for Printing

| Database<br>Name | Variable Name | Data<br>Type | Default<br>Value                                                                                                                                                                                                                                                        | Description                     |
|------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                  | printer_name  | string       | escp2-me1                                                                                                                                                                                                                                                               | Printer model                   |
|                  | resolution    | string       | 360sw                                                                                                                                                                                                                                                                   | Printer resolution (DPI)        |
|                  | paper         | string       | A4                                                                                                                                                                                                                                                                      | Paper type, such as A4          |
|                  | left_margin   | float        | 1                                                                                                                                                                                                                                                                       | Left printing margin (unit: cm) |
|                  | top_margin    | float        | 1                                                                                                                                                                                                                                                                       | Top printing margin (unit: cm)  |
| printer          | scaling       | float        | 1                                                                                                                                                                                                                                                                       | Printing scaling                |
| printer          |               |              | stringescp2-me1Printer modelstring360swPrinter resolution (DPI)stringA4Paper type, such as A4float1Left printing margin (unit:float1Top printing margin (unit:float1Printing scalingfloat1Printer status:o0Idleiong02: Printer not connectediong03: Unsupported printer | Printer status:                 |
|                  |               |              |                                                                                                                                                                                                                                                                         | • 0: Idle                       |
|                  | etatue        | long         |                                                                                                                                                                                                                                                                         | • 1: Printing                   |
|                  | status        | long         | 0                                                                                                                                                                                                                                                                       | 2: Printer not connected        |
|                  |               |              |                                                                                                                                                                                                                                                                         | 3: Unsupported printer type     |
|                  |               |              |                                                                                                                                                                                                                                                                         | 4: Printing error               |

| Database Name  | Variable Name | Data<br>Type | Default<br>Value | Description                   |
|----------------|---------------|--------------|------------------|-------------------------------|
|                | Year          | ushort       | 0                | Current date (year).          |
|                | Month         | uchar        | 0                | Current date (month).         |
|                | Day           | uchar        | 0                | Current date (day).           |
|                | Hour          | uchar        | 0                | Current date (hour).          |
| system         | Minute        | uchar        | 0                | Current date (minute).        |
|                | Second        | uchar        | 0                | Current date (second).        |
|                |               |              |                  | From the date 1970/1/1 to     |
|                | CurDateTime   | ulong        |                  | the second read of the        |
|                |               |              |                  | current time.                 |
|                | Year_set      | ushort       | 0                | Sets the current date (year). |
|                | Month ont     | uchar        | 0                | Sets the current date         |
|                | Wonth_Set     | uchai        |                  | (month).                      |
|                | Day_set       | uchar        | 0                | Sets the current date (day).  |
| hmi_system_set | Hour_set      | uchar        | 0                | Sets the current date (hour). |
|                | Minuto oot    | uchar        | 0                | Sets the current date         |
|                | Minute_Set    | uchai        | 0                | (minute).                     |
|                | Second set    | uchor        | 0                | Sets the current date         |
|                | Second_set    | uchar        | U                | (second).                     |

## 19.8 System Variables Related to Time

## 19.9 System Variables for LCD Settings

| Database Name  | Variable Name | Data<br>Type | Default<br>Value | Description                                                                  |
|----------------|---------------|--------------|------------------|------------------------------------------------------------------------------|
| system         | ScreenWidth   | ushort       | 640              | Width of the screen pixels of the HMI                                        |
|                | ScreenHeight  | ushort       | 480              | Height of the screen pixels of the HMI                                       |
| hmi_system_set | brightness    | uchar        | 100              | LCD backlight value (range: 0-100)                                           |
|                | blankdelaysec | ushort       | 0                | Screensaver delay time (unit: seconds) (0 means to disable the screensaver.) |

## 19.10 System Variables for Serial Port Communication

| Databasa Nama | Variable Name | Data | Default | Description |
|---------------|---------------|------|---------|-------------|
| Database Name |               | Туре | Value   | Description |

| hmi system set  | com2_is_rs232 | bit | 0 | <ul><li>1: Serial port 2 works as RS232.</li><li>0: Serial port 2 works as RS485.</li></ul> |
|-----------------|---------------|-----|---|---------------------------------------------------------------------------------------------|
| nini_system_set | com3_is_rs232 | bit | 0 | <ul><li>1: Serial port 3 works as RS232.</li><li>0: Serial port 3 works as RS485.</li></ul> |

# 19.11 System Variables for Touch Alarm

| Database Name  | Variable Name   | Data<br>Type | Default<br>Value | Description                                                                                                                          |
|----------------|-----------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| hmi_system_set | bell_on_click   | bit          | 0                | If you set the value of this<br>variable to 1, an alarm will<br>be triggered automatically<br>when you click on the touch<br>screen. |
|                | bell_loop_count | ulong        | 1                | Defines how many times an alarm is triggered.                                                                                        |
|                | bell_freq       | ulong        | 10               | Defines how long the alarm lasts.                                                                                                    |

## 19.12 System Variables for the Keyboard

| Database<br>Name | Variable Name        | Data<br>Type | Default<br>Value | Description                                                                                                                               |
|------------------|----------------------|--------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                  | NumberMinValue       | float        | 0                | Minimum value to be entered                                                                                                               |
|                  | NumberMaxValue       | float        | 100              | Maximum value to be entered from the digital keyboard.                                                                                    |
|                  | KeyboardBuffer       | string       |                  | Buffer for keyboard input                                                                                                                 |
|                  | Prompt               | string       |                  | Prompt information for keyboard input.                                                                                                    |
| syskeyboard      | NumberKeyboardWindow | string       |                  | Name of the window for digital<br>keyboard input.<br>The internal keyboard is used<br>when the value of this variable is<br>set to blank. |
|                  | PasswordChar         | char         | 0                | Password characters.<br>No password is available when<br>the value of this variable is set to<br>0.                                       |
|                  | IsEnterPressed       | bit          | 0                | The value 1 is returned when you press down the <b>Enter</b> key.                                                                         |
|                  | TextKeyboardWindow   | string       |                  | Name of the window for text                                                                                                               |

|  |  | keyboard input.                    |
|--|--|------------------------------------|
|  |  | The internal keyboard is used      |
|  |  | when the value of this variable is |
|  |  | set to blank.                      |

## 19.13 System Variables for Links

| Database Name  | Variable Name       | Data<br>Type | Default<br>Value | Description                                                                                                                                                                                                                                                                                        |
|----------------|---------------------|--------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hmi_system_set | link_timeout_wnd_on | bit          | 1                | <ul> <li>1: The Communication<br/>Timeout window is<br/>displayed when timeout<br/>occurs during the<br/>communication over the<br/>link.</li> <li>0: The Communication<br/>Timeout window is not<br/>displayed when timeout<br/>occurs during the<br/>communication over the<br/>link.</li> </ul> |
|                | link_timeout_wnd_x  | short        | -1               | Location of the start point<br>on the X-axis in the<br><b>Communication Timeout</b><br>window.<br>The default value -1 means<br>that the <b>Communication</b><br><b>Timeout</b> window will be<br>centrally aligned.                                                                               |
|                | link_timeout_wnd_y  | short        | -1               | Location of the start point<br>on the Y-axis in the<br><b>Communication Timeout</b><br>window.<br>The default value -1 means<br>that the <b>Communication</b><br><b>Timeout</b> window will be<br>centrally aligned.                                                                               |

## 19.14 System Variables for the Disk Space

| Database Name  | Variable Name         | Data<br>Type | Default<br>Value | Description               |
|----------------|-----------------------|--------------|------------------|---------------------------|
| hmi_system_set | flash_free_disk_space | ulong        |                  | Size of free space of the |

|                    |        |   | internal flash (unit: Kbyte).                                                                                                                                                                                       |
|--------------------|--------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cf_free_disk_space | ulong  |   | Size of free space of the                                                                                                                                                                                           |
| low_space_wnd_on   | bit    | 1 | <ul> <li>1: A prompt window will<br/>be displayed when the<br/>disk does not have<br/>enough space.</li> <li>0: No prompt window<br/>will be displayed when the<br/>disk does not have<br/>enough space.</li> </ul> |
| low_space_text     | string |   | Prompt information to be<br>displayed when the disk<br>does not have enough<br>space.                                                                                                                               |

# 19.15 System Variables for the Scroll Bar

| Database Name  | Variable Name | Data<br>Type | Default<br>Value | Description                                                                                                           |
|----------------|---------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------|
| hmi_system_set | HScrollSize   | ulong        | 0                | Width of the horizontal scroll                                                                                        |
|                |               |              |                  | bar.<br>The system internal width is<br>used when the value of this<br>variable is 0.                                 |
|                | VScrollSize   | ulong        | 0                | Width of the vertical scroll<br>bar.<br>The system internal width is<br>used when the value of this<br>variable is 0. |

# **Chapter 20 System Functions**

EASY provides some internally defined system functions. With these function, you can realize specific system functions, such as window display, historical data process, printing, and script commissioning.

Besides, you can also call these system functions directly during the interface configuration.

This chapter lists all the system functions supported by EASY.

### 20.1 System Functions for the Interface

20.1.1 hmi\_window\_show

Original Function: int hmi\_window\_show(char \*window\_name) Function Description: To show a specified window. Return Values: 0 Failed 1 Successful Parameters: window\_name: Name of the target window you want to display. Example: hmi\_window\_show("test")

#### 20.1.2 hmi\_window\_hide

Original Function: int hmi\_window\_hide(char \*window\_name) Function Description: To close a specified window. Return Values: 0 Failed 1 Successful Parameters: window\_name: Name of the target window you want to close. Example: hmi\_window\_hide("test")

#### 20.1.3 hmi\_window\_show\_modal

Original Function: int hmi\_window\_show\_modal(char \*window\_name) Function Description: To display a modal dialog box. Return Values: 0 Failed 1 Successful Parameters: window\_name: Name of a window. Example: hmi\_window\_show\_modal("test")

#### 20.1.4 hmi\_window\_exit\_modal

### Original Function: int hmi\_window\_exit\_modal(char \*window\_name) Function Description: To exit the Modal dialog box. Call this function when you want to exit a modal dialog box

Return Values: 0 Failed

1 Successful

Parameters: window\_name: Name of a wiondow.
Example: hmi\_window\_exit\_modal("test")

#### 20.1.5 data\_input\_window

Original Function: int data\_input\_window(char \*varname, char \*caption, double minvalue, double maxvalue, int dec\_num)

Function Description: Function for data input. When you call this function, the Data Input window will be displayed. The data you enter in this window will be assigned as the value for the parameter varname.

Return Values: 0 Failed

1 Successful

**Parameters**: *varname*: Name of a variable. The data you enter in the **Data Input** window will be assigned as the value for this parameter.

*caption*: Prompt information to be displayed as the title of the **Data Input** window.

*minvalue*: Minimum value allowed for the data entered. *maxvalue*: Maximum value allowed for the data entered. *dec\_num*: Number of decimals.

Example: data\_input\_window("test.data", "test", 0, 100, 2)

#### 20.1.6 data\_input\_window\_pwd

Original Function: int data\_input\_window\_pwd(char \*varname, char \*caption, double minvalue, double maxvalue, int dec\_num, int passwd)

Function Description: Function for data input (password display option available). When you call this function, the Data Input window will be displayed. The data you enter in this window will be assigned as the value for the parameter varname.

Return Values: 0 Failed

1 Successful

**Parameters**: *varname*: Name of a variable. The data you enter in the **Data Input** window will be assigned as the value for this parameter.

*caption*: Prompt information to be displayed as the title of the **Data Input** window.

*minvalue*: Minimum value allowed for the data entered. *maxvalue*: Maximum value allowed for the data entered. *dec\_num*: Number of decimals. *passwd*: 1: Password Display; 0: Normal Display.

Example: data\_input\_window\_pwd("test.data", "test", 0, 100, 2, 1)

#### 20.1.7 text\_input\_window

**Original Function**: int **text\_input\_window**(**char** \**varname*, **char** \**caption*, **int** *passwd*)

Function Description: Function for text input. When you call this function, the Text Input window will be displayed. The text you enter in this window will be assigned as the value for the parameter varname.

Return Values: 0 Failed

1 Successful

**Parameters**: *varname*: Name of a variable. The text you enter in the **Text Input** window will be assigned as the value for this parameter.

*caption*: Prompt information to be displayed as the title of the **Text Input** window.

passwd: 1: Password Display; 0: Normal Display.
Example: text\_input\_window("test.data", "test", 1)

#### 20.1.8 msgbox

Original Function: int msgbox(char \*caption, char \*text, int type) Function Description: Function for displaying a message box. Return Values: MSG\_IDOK: You can click on the OK button. MSG\_IDCANCEL: You can click on the Cancel button. MSG\_IDABORT: You can click on the Abort button. MSG\_IDRETRY: You can click on the Retry button. MSG\_IDIGNORE: You can click on the Ignore button. MSG\_IDYES: You can click on the Yes button. MSG\_IDNO: You can click on the No button. Parameters: caption: Title of a window.

| text.                                                   | Message content.                                                  |  |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| <i>type</i> : Type of a message box, valued as follows: |                                                                   |  |  |  |
|                                                         | MSG_MB_OK: The <b>OK</b> button is displayed.                     |  |  |  |
|                                                         | MSG_MB_OKCANCEL: The <b>OK</b> and <b>Cancel</b> buttons are      |  |  |  |
| displayed.                                              |                                                                   |  |  |  |
|                                                         | MSG_MB_YESNO: The <b>Yes</b> and <b>No</b> buttons are displayed. |  |  |  |
|                                                         | MSG_MB_RETRYCANCEL: The Retry and Cancel buttons are              |  |  |  |
| displayed.                                              |                                                                   |  |  |  |
|                                                         | MSG_MB_ABORTRETRYIGNORE: The Abort, Retry and                     |  |  |  |
| Ignore buttons are disp                                 | olayed.                                                           |  |  |  |
|                                                         | MSG_MB_YESNOCANCEL: The Yes, No and Cancel buttons                |  |  |  |
| are displayed.                                          |                                                                   |  |  |  |
|                                                         | MSG_MB_ICONSTOP: The <b>Stop</b> icon is displayed.               |  |  |  |
|                                                         | MSG_MB_ICONQUESTION: The <b>Question</b> icon is displayed.       |  |  |  |
|                                                         | MSG_MB_ICONEXCLAMATION: The <b>Exclamation</b> icon is            |  |  |  |
| displayed.                                              |                                                                   |  |  |  |
|                                                         | MSG_MB_ICONINFORMATION: The Information icon is                   |  |  |  |
| displayed.                                              |                                                                   |  |  |  |
|                                                         | MSG_MB_DEFBUTTON1: The first button is defined as default.        |  |  |  |
|                                                         | MSG_MB_DEFBUTTON2: The second button is defined as                |  |  |  |
| default.                                                |                                                                   |  |  |  |
|                                                         | MSG_MB_DEFBUTTON3: The third button is defined as default.        |  |  |  |
| Example: msgb                                           | ox("Error", "Open file failed", MSG_MB_OK)                        |  |  |  |
| 20.1.9 hmi_center_                                      | window                                                            |  |  |  |

Original Function: int hmi\_center\_window(char \*window\_name) Function Description: Function for displaying the window in the center. Return Values: 0 Failed 1 Successful Parameters: window\_name: Name of a window. Example: hmi\_center\_window("test")

### 20.2 System Functions for Parameters

#### 20.2.1 rtdb\_param\_mem\_to\_rtdb

Original Function: int rtdb\_param\_mem\_to\_rtdb() Function Description: To copy the data from the HMI memory to the real-time database as the value of parameters. Return Values: 0 Failed

1 Successful

Parameters: N/A Example: rtdb\_param\_mem\_to\_rtdb()

20.2.2 rtdb\_param\_rtdb\_to\_mem

Original Function: int rtdb\_param\_rtdb\_to\_mem() Function Description: To copy the value of parameters from the real-time database to the HMI memory. Return Values: 0 Failed

1 Successful

Parameters: N/A

Example: rtdb\_param\_rtdb\_to\_mem()

#### 20.2.3 sys\_save\_param

Original Function: int sys\_save\_param() Function Description: To save parameter data to devices. Return Values: 0 Failed 1 Successful Parameters: N/A Example: sys\_save\_param()

### 20.3 System Functions for Script Commissioning

20.3.1 debug\_set\_ip

**Original Function**: void **debug\_set\_ip**(**const char** \**ip*) **Function Description**: To set the IP address of the host on which the

#### Commissioning Output Background tool is running.

Return Values: N/A

**Parameters**: *ip*: IP address of the host on which the **Commissioning Output Background** tool is running.

Example: debug\_set\_ip("127.0.0.1");

20.3.2 debug\_printf

**Original Function**: void **debug\_printf**(**const char** \**format*, ...)

**Function Description**: To export the printing commissioning information to the commissioning host. Use this function in the same way as the library function **printf** in the standard C language.

Return Values: N/A

**Parameters**: *format*: String for format control. Same as for the library function **printf** in the standard C language.

...: Optional parameter. Same as for the library function **printf** in the standard C language.

**Example**: debug\_printf("i=%d\n", i);

### 20.4 System Functions for Real-Time Trend Curves

20.4.1 rtdb\_log\_save\_file

Original Function: int rtdb\_log\_save\_file(char \*logname, int save\_dir, char \*filename)

Function Description: To save a real-time data record into a file.

Return Values: 0 Failed

1 Successful

Parameters: logname: Name of a real-time data record.

save\_dir: 0: HMI internal flash; 1: CF card.

filename: Name of the file for saving the real-time data record.

Example: rtdb\_log\_save\_file("real", 0, "recfile.log")

20.4.2 rtdb\_get\_log\_data

Original Function: int rtdb\_get\_log\_data(char \*logname, char \*dataname, u8 \*buf, int log\_number)
Function Description: To obtain data from the current real-time data record.

Return Values: 0: Failed

Other values: Actual volume of data collected.

**Parameters**: *logname*: Name of a real-time data record.

dataname: Name of the data variable for which data is to be collected.

*buf*: Buffer for the collected data. You need to assign space for the butter in advance.

*log\_number*. Volume of data to be collected.

**Example**: rtdb\_get\_log\_data("real", "test.data1", buf, 100)

#### 20.4.3 rtdb\_get\_log\_data\_from\_file

Original Function: int rtdb\_get\_log\_data\_from\_file(int file\_path, char

\*filename, char \*dataname, u8 \*buf, int log\_number, int start\_pt)

Function Description: To obtain data from the saved real-time record file.

Return Values: 0: Failed

Other values: Actual volume of data collected.

**Parameters**: *file\_path*: 0: HMI internal flash; 1: CF card.

filename: Name of the file where the real-time data record is saved.

dataname: Name of the data variable for which data is to be collected.

buf: Buffer for the collected data. You need to assign space for the

butter in advance.

*log\_number*. Volume of data to be collected.

*start\_pt*: Start point from where data is collected.

**Example**: rtdb\_get\_log\_data\_from\_file(0, " recfile.log ", "test.data1", buf, 100, 0)

20.4.4 rtdb\_log\_save\_usr\_file

Original Function: int rtdb\_log\_save\_usr\_file(usr\_log\_file\_info\_t \*usr\_log, int save\_dir,char \*filename)

Function Description: To save a user record of data into a file.

Return Values: 0: Failed

1: Saved Successfully

Parameters: usr\_log: Name of the user record.

save\_dir. Directory for saving the user record file.

0: File saved to the HMI internal flash.

1: File saved to the CF card.

*Filename*: Name of the file for saving the user record. **Example**: rtdb\_log\_save\_usr\_file("test ","0 ", "testfile")

# 20.5 System Functions for Historical Data Processing

### 20.5.1 sys\_history\_download

Original Function: int sys\_history\_download() Function Description: Function for downloading historical data; to copy historical data from the HMI internal flash or the CF card to a thumb drive. Return Values: 0 Failed 1 Successful Parameters: N/A

Example: sys\_history\_download()

20.5.2 history\_query\_all

**Original Function**: int **history\_query\_all**(**char** \*query\_var\_name)

**Function Description**: To query historical data records from all historical databases by the specified fields. For details, see section 9.5.1 Inquiring Historical Data by Specified Fields.

Return Values: 0: Failed

1: Successful

**Parameters**: *query\_var\_name*: Name of the historical data to which the field to be searched is associated.

Example: history\_query\_all("test.query\_data1")

### 20.5.3 history\_query\_data

**Original Function**: int **history\_query\_data**(**char** \*query\_var\_name, **char** \**history\_name*)

Function Description: To query historical data records from the defined historical database by the specified fields. For details, see section 9.5.1 Inquiring Historical Data by Specified Fields.

Return Values: 0: Failed

1: Successful

Parameters: query\_var\_name: Name of the historical data with which the field to

be searched is associated.

*history\_name*: Name of the historical data record.

Example: history\_query\_data("test.query\_data1", "his")

### 20.5.4 hislist\_query\_data

Original Function: int hislist\_query\_data(char \*window\_name, char

\*widget\_name)

**Function Description**: To query the values of the various fields of the record currently selected in the **Historical List** control.

Return Values: 0: Failed

1: Successful

**Parameters**: *window\_name*: Name of the window where the **Historical List** control is located.

widget\_name: Name of the graphic component of the Historical List control.

**Example**: history\_query\_data("main\_pic", "hislist1")

### 20.5.5 hislist\_delete\_data

Original Function: int hislist\_delete\_data(char \*window\_name, char

\*widget\_name)

Function Description: To delete the currently selected record from the Historical List control.

Return Values: 0: Failed

1: Successful

**Parameters**: *window\_name*: Name of the window where the **Historical List** control is located.

widget\_name: Name of the graphic component of the Historical List

**Example**: history\_delete\_data("main\_pic", "hislist1")

# 20.6 System Function for Alarming

#### 20.6.1 alarm\_confirm

control.

Original Function: int alarm\_confirm(char \*window\_name, char

\*widget\_name)

Function Description: To confirm the alarm record currently selected in the

Alarm Window control.

Return Values: 0: Failed

1: Successful

**Parameters**: *window\_name*: Name of the window where the **Alarm Window** control is located.

widget\_name: Name of the graphic component in the alarm window.
Example: alarm\_confirm("main\_pic", "alarmwnd1")

# 20.7 System Function for Printing

20.7.1 print\_window

Original Function: int print\_window(char \*window\_name, int x1, int y1, int x2, int y2)

**Function Description**: To print the selected area from the currently displayed window.

Return Values: 1: Successful

Other values: Failed

**Parameters**: *window\_name*: Name of the window to be printed.

x1: X-axis value of the top left corner of the area to be printed.

*y1*: Y-axis value of the top left corner of the area to be printed.

x2: X-axis value of the bottom right corner of the area to be printed.

*y2*: Y-axis value of the bottom right corner of the area to be printed.

# 20.8 System Functions for Real-Time Database Read/Write

20.8.1 rtdb\_set\_data\_value\_by\_name

# Original Function: int rtdb\_set\_data\_value\_by\_name(char \*dbname,char \*dataname,void \*data\_value)

**Function Description**: You can use this function in the expansion module to write the data in the real-time database. This function sets the value of the data in the real-time database.

Return Values: 0 Failed

1 Successful

Parameters: *dbname*: Name of a database.

Dataname: Name of a data.

*data\_value*: Value of a data. The value of a data varies according to the data type. For example, the bit data has only 1 byte, the long data has 4 bytes, and the length of the string data is user-defined.

#### Example:

float value=1.0;

rtdb\_set\_data\_value\_by\_name("test","Ldata",&value);

The above function sets the value of the data Ldata in the database

test to 1.0.

20.8.2 rtdb\_get\_data\_value\_by\_name

Original Function: int rtdb\_get\_data\_value\_by\_name(char \*dbname,char \*dataname,void \*data\_value)

**Function Description**: You can use this function in the expansion module to read the data in the real-time database. This function obtains the value of the data from the real-time database.

Return Values: 0 Failed

1 Successful

Parameters: *dbname*: Name of a database.

dataname: Name of a data.

*data\_value*: Value of a data. The parameter **data\_value** requires you to assign the space in advance. For example, you need to assign 1 byte of space for the bit data and 4 bytes of space for the long data.

#### Example:

float value;

rtdb\_get\_data\_value\_by\_name("test","Ldata",&value);

The above function obtains the current value of the data Ldata from the database test and saves the value to the variable value.

# 20.9 System Functions for Serial Port Communication

20.9.1 serial\_open

Original Function: int serial\_open(const char \*device,int baud,int parity,int data\_bits,int stop\_bits,int timeout)

Function Description: To open a serial port.

Return Values: -1 Failed

Other value Serial port handle

Parameters: device: Serial port name, for example, COM1, COM2, or COM3.

*baud*: Baud rate of the serial port. At present, the supported baud rates are 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200.

parity: Parity check mode, including No Parity Check (SERIAL\_PARITY\_NO), Odd Parity Check (SERIAL PARITY ODD), Even and Paritv Check (SERIAL\_PARITY\_EVENT).

data\_bits: Number of data bits, including 5, 6, 7, and 8.

*stop\_bits*: Number of stop bits, including 1 and 2.

timeout. Duration of communication timeout (unit: ms).

Example: serial\_open("COM1", 9600, SERIAL\_PARITY\_NO, 8, 1, 100)

20.9.2 serial\_close

Original Function: int serial\_close(int serial\_id)

Function Description: To close a serial port.

Return Values: 0 Failed

1 Successful

**Parameters**: *serial\_id*: Serial port handle (returned by the function **serial\_open**) **Example**: serial\_close(1)

20.9.3 serial\_flush

Original Function: int serial\_flush(int serial\_id, int flag)
Function Description: To clear the buffering data of a serial port.
Return Values: 0 Failed
1 Successful

Parameters: *serial\_id*: Serial port handle (returned by the function **serial\_open**) *flag*: Flush flag. SERIAL\_FLUSH\_TX: clears the currently unsent data.

SERIAL\_FLUSH\_RX: clears the data in the receiving buffer.

SERIAL\_FLUSH\_TX|SERIAL\_FLUSH\_RX: clears the data in

both the sending and receiving buffers.

**Example**: serial\_flush(1, SERIAL\_FLUSH\_TX|SERIAL\_FLUSH\_RX)

20.9.4 serial\_write

**Original Function**: int **serial\_write**(**int** *serial\_id*, **char** \**buf*, **size\_t** *size*) **Function Description**: To send data to a serial port.

Return Values: -1 Failed

Other value Actual length of the data sent

Parameters: *serial\_id* Serial port handle (returned by the function **serial\_open**) *buf* Buffer for keeping the data to be sent. *size*: Length of the data to be sent (unit: byte).

**Example**: serial\_write(1,buf, sizeof(buf))

20.9.5 serial\_read

**Original Function**: int **serial\_read**(**int** *serial\_id*, **char** \**buf*, **size\_t** *size*) **Function Description**: To receive data through a serial port.

Return Values: -1 Failed

Other value Actual length of the data received

Parameters: *serial\_id*: Serial port handle (returned by the function **serial\_open**) *buf*: Buffer for keeping the received data.

size: Size of the receiving buffer (unit: byte).

Example: serial\_read(1,buf, sizeof(buf))

20.9.6 serial\_poll

**Original Function**: int **serial\_poll(int** *serial\_id*, **int** *timeout*)

Function Description: To check whether there is data to read at a serial port.

Return Values: -1 Error

0 Timeout, which meas no data is received during the timeout period

1 Data available to be read at the serial port

Parameters: *serial\_id*: Serial port handle (returned by the function **serial\_open**)

*Timeout*: For inquiring the timeout duration (unit: ms)

**Example**: serial\_poll(1,100)

# 20.10 System Functions for File Directory

20.10.1 hmi\_get\_usr\_data\_dir

Original Function: const char \* hmi\_get\_usr\_data\_dir()
Function Description: To get an available file directory for saving user-defined files.
Return Value: Name of the available file directory.
Parameters: N/A
Example: hmi\_get\_usr\_data\_dir()

20.10.2 hmi\_get\_cfcard\_dir

Original Function: const char \*hmi\_get\_cfcard\_dir() Function Description: To get the CF card directory. Return Value: Name of the CF card directory. Parameters: N/A Example: hmi\_get\_cfcard\_dir()

### 20.10.3 hmi\_get\_usb\_dir

Original Function: const char \*hmi\_get\_cfcard\_dir() Function Description: To get the directory for your thumb drive. Return Values: Name of the directory for your thumb drive. Parameters: N/A Example: hmi\_get\_usb\_dir()

#### 20.10.4 filelist\_delete\_file

Original Function: int filelist\_delete\_file(char \*window\_name, char

#### \*widget\_name)

**Function Description**: To delete the currently selected file from the file list control component.

Return Values: 0 Failed

1 Successful

**Parameters**: *window\_name*: Name of the window where the file list control component is located.

widget\_name: Name of the file list control component.
Example: filelist\_delete\_file("OpenLogFile","filelist1")

20.10.5 sys\_mount\_usb\_disk

Original Function: int sys\_mount\_usb\_disk() Function Description: To mount the thrum drive. Return Values: 0 Failed 1 Mounting successful Parameters: N/A Example: sys\_mount\_usb\_disk()

20.10.6 sys\_unmount\_usb\_disk

Original Function: int sys\_unmount\_usb\_disk() Function Description: To unmount the thumb drive. Return Values: 0 Failed 1 Unmounting successful Parameters: N/A Example: sys\_unmount\_usb\_disk()

20.10.7 sys\_copy\_file\_to\_usb\_disk

| Original Function: int sys_copy_file_to_usb_disk(char *filename, int        |                                                     |              |        |          |       |    |         |     |          |
|-----------------------------------------------------------------------------|-----------------------------------------------------|--------------|--------|----------|-------|----|---------|-----|----------|
| automount, int file_dir)                                                    |                                                     |              |        |          |       |    |         |     |          |
| Function Description: To copy files from the internal flash or CF card to a |                                                     |              |        |          |       |    |         |     |          |
| thumb drive.                                                                |                                                     |              |        |          |       |    |         |     |          |
| Return Values: 0                                                            |                                                     | Failed       |        |          |       |    |         |     |          |
| 1                                                                           |                                                     | Copying      | succe  | essful   |       |    |         |     |          |
| Parameters: filename: Name of the file to be copied.                        |                                                     |              |        |          |       |    |         |     |          |
| Automount: Status of the thumb drive.                                       |                                                     |              |        |          |       |    |         |     |          |
|                                                                             | 1: Automatic mounting or unmounting the thumb drive |              |        |          |       |    |         |     |          |
|                                                                             | 0:                                                  | Mounting     | the    | thumb    | drive | by | calling | the | function |
| sys_mount_usb_disk.                                                         |                                                     |              |        |          |       |    |         |     |          |
| file_dir. D                                                                 | irec                                                | tory for sav | ing th | ne file. |       |    |         |     |          |
| 0: Internal flash user data directory                                       |                                                     |              |        |          |       |    |         |     |          |
|                                                                             | 1: (                                                | CF card      |        |          |       |    |         |     |          |

- 2: Internal flash historical data directory
- 3: CF card historical data directory

Example: sys\_copy\_file\_to\_usb\_disk("file1",1,0 )

#### 20.10.8 sys\_copy\_file\_from\_usb\_disk

**Original Function**: int **sys\_copy\_file\_from\_usb\_disk**(**char** \**filename*, **int** *automount*, **int** *file\_dir*)

**Function Description**: To copy files from the thumb drive to the internal flash or CF card.

Return Values: 0 Failed

1

Copying successful

Parameters: filename: Name of the file to be copied.

automount: Status of the thumb drive.

- 1: Automatic mounting or unmounting the thumb drive
- 0: Mounting the thumb drive by calling the function

#### sys\_mount\_usb\_disk.

file\_dir: Directory for saving the file.

- 0: Internal flash user data directory
- 1: CF card
- 2: Internal flash historical data directory
- 3: CF card historical data directory
- **Example**: sys\_copy\_file\_from\_usb\_disk("file1",1,0)

# 20.11 System Functions for Time and Date

### 20.11.1 setsystime

Original Function: int setsystime(int year, int month, int day, int hour, int minu,

int sec)

Function Description: To set the system time.

Return Values: 1 Successful

0

Failed

Parameters: year. Year

*month*: Month

*day*: Day

hour. Hour

minu: Minute

sec: Second

Example: setsystime(2008, 10, 11, 10, 30, 10)

Original Function: int gettimeinfo (unsigned long cur\_datetime, int \*year, int \*month, int \*day, int \*hour, int \*minu, int \*sec)

Function Description: To convert the current system time displayed in seconds (for example, the system variable system.CurDateTime) to the time displayed with year, month, day, hour, minute, and second.

Return Values: 1 Successful 0

Failed

Parameters: cur\_datetime: Current time displayed in seconds.

year. Year month: Month day: Day hour: Hour minu: Minute sec: Second

Example: int year, month, day, hour, minu, sec;

getsystime(\$system.CurDateTime, &year, &month, &day, &hour, &minu,

&sec)

#### 20.11.3 datetime add

Original Function: int datetime\_add (int \*year, int \*month, int \*day, int \*hour, int \*minu, int \*sec, int add\_seconds) Function Description: To add certain seconds on top of the current time. **Return Values:** 1 Successful Failed 0 Parameters: year. Year after the adding. *month*: Month after the adding day: Day after the adding hour. Hour after the adding *minu*: Minute after the adding sec: Second after the adding add seconds: Number of seconds added **Example**: int year, month, day, hour, minu, sec; datatime\_add(&year, &month, &day, &hour, &minu, &sec, 60)

# 20.12 System Functions for the Window

20.12.1 touch\_adjust

Original Function: int touch\_adjust() Function Description: To display the window for adjusting the touch screen. Return Values: 1 Successful 0 Failed Parameters: Example: touch\_adjust()

20.12.2 hmi\_sys\_set\_wnd

Original Function: int hmi\_sys\_set\_wnd() Function Description: To display the System Setting window. Return Values: 1 Successful 0 Failed Parameters:

Example: hmi\_sys\_set\_wnd()

### 20.12.3 hmi\_sys\_set\_wnd

Original Function: int sys\_set\_time\_wnd() Function Description: To display the window for adjusting the time. Return Values: 1 Successful 0 Failed Parameters: Example: sys\_set\_time\_wnd()

# 20.13 Other System Functions

### 20.13.1 sys\_shutdown

Original Function: int sys\_shutdown(int *type*) Function Description: To shut down the system. Return Values: 1 Successful 0 Failed Parameters: *type*: 2-Shut down the system; 3-Shut down and then restart the system.

**Example**: sys\_shutdown(2)

20.13.2 prog\_upgrade

**Original Function**: int prog\_upgrade()

**Function Description**: To upgrade the system or the user program through the thumb drive.

Return Values: 1 Successful

0 Failed

Parameters:

Example: prog\_upgrade()

20.13.3 sys\_sleep

Original Function: void sys\_sleep(unsigned long *ms*)
Function Description: To put the program to sleep for a period of time.
Return Values:
Parameters: *ms:* Number of milliseconds for putting the program to sleep.
Example: sys\_sleep(100)