
Chapter 1 Introduction to the Configuration Software EASY

This Chapter describes the basic functions and characteristics of EASY, the industrial

control configuration software (referred to as EASY below).

It describes in details the system architecture and the functions of each component,

which helps the user better understand the general picture of EASY. Besides, it describes

the hardware and software requirements, installation process, and operational

environment for the operation of EASY.

1.1 Overview

EASY is a cofiguration software developed on the supervisory computer of the the

EASY Human-Machine Interface (HMI). It collects real-time data, and processes it using

multiple technics, such as animation display, alarming, process control, real-time curve,

historical curve, and report output, with the help of which solutions are provided for solving

real project issues.

EASY combines the functions of the previous configuration software and HMI, and

thus is more powerful than the ordinary touch screen, and more widely applied in the

automation field.

EASY has the following basic characteristics and functions:

• Simple and flexible visual operation interface

EASY adopts the visual development interface – windows to display the system

operation graphics, which makes the configuration process simple, direct, and flexible.

You can use the default system architecture, or configure your own graphical

interfaces according to your needs. Various types and styles of graphical interfaces

are available for your selection.

• Rich and vivid multimedia graphics

EASY provides real-time feedback to the operator regarding the system operation

status, performance, and exception alarms in multiple forms such as graphics,

symbols, reports, and curves.

Changes in the graphic size and color, flashing brightness, and graphic moving and

rotating all enhance the dynamic visual effects. The animation effects can be realized

by setting the properties of the graphic components and symbols.

Besides, EASY provides various WINDOWS programming controls, which makes

programming easier for programmers.

• Powerful network capabilities

EASY supports multiple network architectures, such as those based on TCP/IP,

Modem, and RS-485/RS-232.

• Various alarming functions

EASY provides various ways of alarming, supported by a rich variety of alarm types

and flexible alarm processing functions. This not only makes the alarm setting more

convenient, but also realizes the real-time system reflection and alarm information

printing.

Besides, EASY keeps records of all alarm information and responses, which ensures

to a great extent safe and reliable operation on the site.

• Real-time database, which makes the customized configuration much easier

The real-time database is a centralized data processing center. It is the core of the

whole system, and is shared by various system parts and their functional components.

Each part or component of the system inputs and exports data to and from the

database separately, and each has its own error control system. During the

configuration of an application system, each part can be configured and created

independently; while all of the parts exchange data through the database and work

interrelatedly during the whole system operation.

• Stable and reliable data management through database

EASY uses the dedicated database to keep all of the data, instead of using files for

data storage.

During the configuration, the system designer needs to create a database manually.

However, during the system operation, a database is generated automatically to keep

and process all system data and alarm information.

The adoption of database for data storage and processing enhances the system

reliability and operation efficiency. Besides, it facilitates other application software

systems for directly processing the data stored in the database.

• Distributed control and management of the industrial control system

In consideration of future development tendency of the industrial control system,

EASY makes full use of the currently popular DCCW (Distributed Computer

Cooperator Work) technnology, to make sure that the data collecting devices and

workstations distributed in different sites can cooperate with each other. This allows

the various work stations to exchange real-time data through the EASY system, and

thus ahieves the distributed control and management of the industrial control system.

In summary, EASY is a powerful and simple configuration software. Even ordinary

engineers can easily learn and master the designing and operation of most projects after a

short period of training. In addition, EASY manages to focus on solving project issues,

bypassing complicated hardware and software obstacles. In a word, EASY can always

come out with highly professional industrial control monitoring systems of high

performance and reliability which suit the particular project needs and characteristics.

1.2 System Components

After the EASY software is installed, a program group named EASY Industrial

Control Software will be generated in Programs of the Start menu.

This program group includes shortcuts for the following applications:

• Project Manager: The shortcut for EASY Industrial Control Software Project

Manager. It has the functions of project management, database management, control

blocks, and project uploading and downloading.

• Ladder Diagram Editor: The shortcut for the soft PLC ladder diagram

development program.

• Graphic Interface Editor: The shortcut for the HMI configuration program. It has

the configuration interface development system embedded.

• Historical Data Converter: To maximally compress the data volume contained in

the HMI and store the historical data the most, the EASY system stores the historical

data in a DAT file. You can download this file from the HMI, and then use this

Historical Data Converter to convert the data into an Excel file.

• Commissioning Output Background: You can add printing commissioning

information into the dynamic script. This printing commissioning information will be

exported to the commissioning window of Commissioning Output Background.

• Real-Time Data Monitoring: This tool helps you query and modify the data

stored in the real-time database of the HMI.

1.3 System Architecture

The EASY system architecture consists of three parts: configuration environment,

simulated operational environment, and operational environment.

The configuration environment and simulated operational environment combined can

be considered as a complete set of software tools. It can run on the PC, and you can

customize the system components according to your needs. It is qualified enough to help

you design and configure your own projects, and accomplish function testing as well.

The operational environment is an independent system. It can only run on the HMI. It

processes the project configuration according to your customization, and fulfills the goals

and functions of your configuration designing. The operational environment does not

mean anything by itself; its meaning is realized by configuration projects, namely, the

configuration of the user application system. Once the configuration is done and the

configured project is downloaded to the operational environment of the Programmable

Logic Controller (PLC) via Ethernet, the project can run independently on the HMI without

any interference of the configuration environments, which makes the control system

reliable, real-time, accurate, and secure.

Real-Time Database – Core of EASY

The real-time database can be considered as a data processing center. Besides, it

also carries out the function of public data exchange.

EASY uses the real-time database to manage all the real-time data. It takes in the

real-time data collected by the external device into the real-time database, which then

transfers the data to the data variables correspondent to various configuration interfaces

of the system.

The real-time database automatically implements the alarm processing and saving of

the real-time data. After that, it accordingly sends the related information to the other parts

of the system in the form of events to trigger the related events for real-time handling.

Therefore, the data units stored in the real-time database are not only values of the

variables, but also characteristics (or properties) of the variables and operating methods

(such as alarm properties analyzing, alarm processing, and saving). The encapsulation of

values, properties, and methods together is called a data object.

The real-time database uses exactly the object-oriented technology to provide

services to the other parts of the system; for example, the data exchange between the

various functional compoents of the system.

1.4 System Requirements

Hardware Requirements

• Hardware: Pentium PIII 500 or higher IBM PCs or compatible PCs.

• Memory: 64MB the minimum, and 128MB recommended.

• Monitor: VGA, SVGA, or any other graphics adapter which supports the running of

the desktop operating system. The minimum request is to support 256 colors.

• Mouse: Any mouse which can be used on a PC.

• Communication: RS-232C

• Operating system: Win2000/WinNT4.0 (patch 6)/Win XP English version

Software Requirements

EASY can run in the following operating systems:

• Microsoft Windows NT Server 4.0 (SP3) or higher versions

• Microsoft Windows NT Workstation 4.0 (SP3) or higher version

• Microsoft Windows 95, 98, Me, 2000 (IE5.0 recommended for Windows 95) or

higher versions

1.5 System Installation

The EASY software is stored on the disk. After you insert the disk into the CD/DVD

drive of your PC, the installer setup.exe will start running atomatically, and initiate the

EASY installation wizard.

To install EASY, please follow the steps below (Take WinXP installation for example;

same installation procedure for WinNT4.0 and Win2000):

1) Start the PC.

2) Insert the EASY installation disk into the CD/DVD drive.

The installer EASYSoftware.exe will start running automatically, as shown below

in Figure 1.1. (You can also double-click on the EASYSoftware.exe file to initiate

the installation.)

Figure 1.1

3) Click on the Next button, and you will see the user information dialog box, as

shown below in Figure 1.2.

Type in the information for Username and Company. Click on the Back button to

go back to the previous dialog box, and click on the Cancel button to exit the

installation.

Figure 1.2

4) Select the installation path for EASY.

After you confirm the user registration information, the Destination Folder dialog

box will be displayed for you to select the installation path, as shown in Figure 1.3.

This dialog box tells you in which path the EASY software will be installed. The

default path is C:\Program Files\EASY\EASY Industrial Control Software\.

Click on the Change button to install EASY in another path.

Figure 1.3

The installer will create a destination folder in the selected path. The folder name

is EASY Industrial Control Software.

You can always click on the Back button to make changes. Otherwise, click on the

Next button to continue the installation or the Cancel button to exit the installation.

5) Select the installation type, as shown in Figure 1.4.

Select the installation type that best suits your needs.

Figure 1.4

After you select the installation type, click on the Next button. And the following

ready-for-installation window, as shown in Figure 1.5, will be displayed. Click on

the Install button to start the installation.

Figure 1.5

6) Installation started, as shown in Figure 1.6.

Figure 1.6

7) Installation complete, as shown in Figure 1.7. Click on the Finish button to exit the

installation wizard.

The EASY software will be initiated for the first time.

Figure 1.7

Chapter 2 Getting Started with EASY

This chapter takes a project as an example to explain comprehensively the

configuration process, operation methods, and function implementation of EASY. It

provides you a gneral picture regarding what EASY is, how it works, and how to use it in a

short period of time.

2.1 General Procedure for Creating a Project

The general procedure for setting up a project is listed as follows:

1) Create a blank project.

2) Create a database, and add real-time data into the database.

3) Configure devices on the site.

4) Design the graphic interface.

5) Set the dynamic properties of the interface to achieve rich animation effects.

6) Compile the project, and run it in the offline simulated einvironment.

7) Download the project.

One thing to be noted, the steps stated above do not follow a strict sequence. As a

matter of fact, the implementation of them might often be overlapped.

Therefore, it is recommended to take the following three aspects into consideration

while configuring a project using the software interface development system:

• What kind of graphic interfaces are expected by the user for whom the interfaces

are developed?

In other words, how to use abstract graphic interfaces to simulate real industrial

sites and the industrial cotrol (IC) devices installed on each site?

• What data variables can be used to describe the various properties of IC objects?

A database will be created for a project. But how to map database variables to

various properties of IC objects; for example, temperature and pressure.

• How to link the data and components in graphic interfaces?

That is to say, how to make components in graphic interfaces reflect the operation

status of devices installed in real industrial sites, and how the operator types in

device control commands?

2.2 Creating a Project

This section focuses on describing the simple and easy-to-learn procedure for the

beginner to create a project using the EASY software.

2.2.1 Creating a Blank Project

1) In the Start menu, go to Programms and select Project Manager.

The EASY Industrial Cotrol Software Development Environment window will

be displayed, as shown in Figure 2.1.

Figure 2.1

2) Click on the Project menu, and then the Create a Project submenu, as shown in

Figure 2.2.

Figure 2.2

The Project Properties window as shown in Figure 2.3 will be displayed:

Figure 2.3

• Project Name: Type in the name of the project in the text box behind Project

Name. This project name is also the path name for this project.

• Project Description: Type in any description information in the text box

behind Project Description.

• HMI Model: Click on the arrow down button to select the HMI model. EASY

provides 14 models of three series for your selection. If you are a developer,

please select the HMI model accordingly.

• Project Path: Click on the button, and then select a valid path in the

Select the Path dialog box.

• Default Slave IP Address: The default IP address of the HMI provided for

user interaction. As a developer, after you type in the IP address here, you do

not need to type in the IP address again for future project downloading.

After you type in all the above project information, click on the OK button, and a

new project is created.

3) To save the project, click on the Project menu and then the Save a Project

submenu, as shown in Figure 2.4.

Figure 2.4

2.2.2 Adding Real-Time Data

1) In the Project Manager tree on the left side of the window, right-click on the

Real-Time Database node and select Create a Database from the pop-out menu,

as shown in Figure 2.5.

Figure 2.5

A dialog box as shwon in Figure 2.6 will be displayed. Here you can set the

database name as test. You can check or uncheck the option Synchronize this

database when multiple-device communication occurs.

Figure 2.6

2) Select the new database test, right-click anywhere in the right-side pane and

select Add Data in the pop-out menu, as shown in Figure 2.7.

Figure 2.7

A dialog box as shown in Figure 2.8 will be displayed. Here you can set Data

Name to data, Data Type to Bit, Data Length to 1 (For the data type Bit, the

number here refers to the number of bits, and the value range 1-8 means the data

is 1-bit to 8-bit binary data; for other data types, the number here refers to the

number of bytes), and Default Value to 0.

Firgure 2.8

3) Add another two data with the data information listed below:

Data Name: data2; Data Type: Long; Data Length: 4; Default Value: 100.

Data Name: IO_data1; Data Type: Bit; Data Length: 1; Default Value: 0.

Figure 2.9 lists the information of the above three new data.

Figure 2.9

2.2.3 Configuring Site Devices

This part takes the Siemens S7-200 Series PLC for example to explain how to

configure site devices.

1) Add a serial port communication link.

In the Project Manager tree on the left side of the window, right-click on the

Device Configuration node, and a pop-out menu will be displayed, as shown in

Figure 2.10.

Figure 2.10

Select Add a Communication Link and then Serial Port on the pop-out menu, a

dialog box as shown in Figure 2.11 will be displayed.

Figure 2.11

In the Basic Link Info tab, and set the Link Name, Scanning Cycle, and

Timeout information, as shown in Figure 2.11.

In the Serial Port Info tab, set the following parameters for the serial port

communication, as shown in Figure 2.12:

Device Name: COM1; Baud Rate: 9600; Data Bits: 8 bits; Stop Bit: 1 bit; Parity

Check: Even.

Figure 2.12

After the above settings are complete, click on OK to save the configuration.

2) Add an I/O device.

In the Project Manager tree on the left side of the window, right-click the new link

link1, and you’ll see the pop-out menu as shown in Figure 2.10.

Select the Add a Device menu, and you’ll see the dialog box as shown in Figure 2.13.

Figure 2.13

In this dialog box, set Device Name to siemens_plc, Device Address to 2, and Device

Driver to Siemens S7 200 Series PLC.

3) Add the data.

In the Project Manager tree on the left side of the window, select the new device

siemens_plc. Right-click in the pane on the right side of the window, and you’ll see the

pop-out menu as shown in Figure 2.14.

Figure 2.14

Select the Add Data menu, and a dialog box as shown in Figure 2.15 will be

displayed.

Figure 2.15

The data configuration for this new I/O device is listed below:

Data Type: Q; Data Group: 0; Data Address: 0.0; Real-Time Data Name:

test.IO_data1; Access Mode: Repeat Read and Single Write.

In this way, the digital output register Q0.0 and the variable test.IO_data1 in the

real-time database are mapped to each other. Whatever changes on the value of Q0.0 will

be relected on the test.IO_data1; similarly, when the value of test.IO_data1 is modified,

the status of Q0.0 will be affected as well.

After you set all the above device data, click on OK to save the configuration.

2.2.4 Creating the Configuration Interface

In the interface development system, you can create as many interfaces as you want

for each project, and generate static or dynamic interrelated graphic objects for each

interface. The various types of graphic objects which compose the interfaces are actually

provided by the Interface Editor of the EASY system.

EASY provides two types of controls: configuration interface controls and Windows

controls. The configuration interface controls are subcategorized into basic graphic

objects, such as rectangles (including incremental rectangles), lines, ovals (including

circles), bitmaps, or text, and complicated graphic objects, such as buttons, trend curve

windows, or alarm windows. The Windows controls include checkboxes, historical lists,

and drop-down lists.

Besides, EASY provides tools for you to do the following operations on graphic

objects:

• Dragging around inside the window

• Zooming in or out

• Reshaping

• Copying

• Deleting

• Aligning

• Both keyboard and mouse drawing

• Adjusting the color

• Changing the line type

• Changing the filling properties

The Interface Editor makes full use of the object-oriented technology to help you

easily set up graphic interfaces. You can select the graphic objects provided by the

system to generate various interfaces, just like you are building with blocks. In addition,

EASY allows you to copy graphic objects among interfaces, so that you can easily use the

developed results.

To create an interface, please follow the procedure below:

1) In the Project Manager window, select the HMI node and then the Interface child

node. Right-click inside the list pane on the right side and select Add an

Interface. In the Interface Setting dialog box as shown in Figure 2.16, set

Interface Name to test, Title to Test Interface, File Name to testwnd, and

check the options Display at the startup of the program and Automatically

create files.

Figure 2.16

Click on OK, and an interface file will be generated, as shown in Figure 2.17.

Figure 2.17

2) Double-click on the newly created test interface file on the right side, and the

Interface Editor software window will be displayed, as shown in Figure 2.18.

Figure 2.18

3) In the tools set on the left side of the window, click on the dynamic text tool

and drag across in the editing pane to create a text graphic component. The

default text set by the system is text.

4) Select this text graphic component, and set the text properties in the property list

on the right side of the window, such as Text Color, Text Contents, Text Font,

etc. For examble, you can change Text Contents to 0.

5) Similarly, click on the incremental oval tool from the tools set on the left to create

an incremental oval.

6) Or click on the data input tool to create a data graphic component.

7) Select File > Save to save this interface, as shown in Figure 2.19.

Figure 2.19

2.2.5 Setting Dynamic Properties for the Interface

Defining animation links is to establishing connection between graphic ojbects in

the interface and data variables in the database. On one hand, any changes of the

variables will be vividly reflected by the animation effects of the graphic objects. On

the other hand, the software developer can change properties of the graphic objects

so as to change values of the data variables.

EASY Interface Editor provides 21 various types of animation links, which are

categorized as follows:

Property Changes Changes in line properties, filling properties, and text color

Location and Size Changes Filling, zooming, and horizental and vertical positioning

Value Output Digitals, analogs, and customized expressions

Special Characteristics Flashing and visibility

Command Languages For pressing down and releasing a button

Multiple animation links can be defined for each graphic object to form complicated

animation effects, so as to meet various display needs during the site operation.

1) Select the text graphic component created in section 2.2.4. In the Property List

on the right side of the window, click on the small rectangle button on the right most

side of the Text property, and the Dynamic Text Property Settings window as shown in

Figure 2.20 will be displayed. Click on the Variable button, and select the corresponding

variable in the HMI database as shown in Figure 2.21.

Figure 2.20

Figure 2.21

Click on OK to save the property settings.

2) Select the oval graphic component created in section 2.2.4. In the Property List

on the right side of the window, click on the small button on the right most of the Start

Color property, and the Dynamic Color Property Settings window as shown in Figure

2.22 will be displayed. Set Dynamic Property Type to Digital, and set the color for both

On and Off under Digital Settings. Click on the Variable button and select the digital

variable from the HMI database as shown in Figure 2.23.

Figure 2.22

Figure 2.23

Click on File and then Save to save the property settings.

3) Select the oval graphic component created in section 2.2.4. In the Property List on

the right side of the window, click on the Press event editing box, and the Event Editing

window as shown in Figure 2.24 will be displayed. Type in the event code

$test.data=!$test.data; and click on OK. (Caution: According to the syntax of the C

language, a semi-colon is compulsory at the end of the command line.)

Figure 2.24

4) Select the data input graphic component created in section 2.2.4. In the Property

List on the right side of the window, click in the Variable Name property editing box, and

select the corresponding variable test.IO_data1 from the HMI database, as shown in

Figure 2.25.

Figure 2.25

5) Click on File and then Save to save the event code.

6) Exit the Interface Editor software, and it will take you back to the main Project

Manager interface.

2.2.6 Compiling a Project and Project Simulation

1) Select Project and then Save a Project to save the configured project.

2) Select Tools and then Compile a Project, and you will see a window as showin in

Figure 2.26. Click on the Start Compiling button.

3) Click on the Exit button after the compiling is complete.

Figure 2.26

4) Select Tools and then Offline Simulation, and the configuration interface as shown in

Figure 2.27 will be displayed. In this interface, the text 100 reflects the data value of

data2. Click on the oval graphic component, and you can see the color changes. Click

on the Data Input box, type in the data 0 or 1, and you can see the graphic component

on the PLC closes and then opens as the value of the digital output point Q0.0 changes

from 0 to 1.

Figure 2.27

Figure 2.28

2.2.7 Downloading a Project

EASY supports project downloading through Ethernet. Before downloading a project,

please make sure that the PC and the HMI communicate well over the network.

1) Set the IP address of the HMI.

Press down the left top corner, right top corner, and left bottom corner of the HMI

sequentially, and the System Settings window as shown in Figure 2.29 will be displayed.

Set the IP address of the network card based on the the network port used by the HMI.

The system default setting is 192.168.1.10.

Figure 2.29

2) In the PC, add an IP address of the same network segment as that of the HMI.

Make sure that you can ping through the IP address of the HMI from the PC.

3) Select Tools and then Download a Project, and you will see the Download a

Project window as shown in Figure 2.30. Type in the IP address of the HMI in the text

box behind Slave IP Address.

4) Click on the Generate Downloading Package button to generate a downloading

package.

5) Click on the Download button to start downloading the project.

Figure 2.30

Chapter 3 Real-Time Database

3.1 Overview

The real-time database is the core of EASY. During the system operation, the actual
manufacturing status of various sites are expected to be reflected vividly on the screen
through various animation effects. Meanwhile, the commands entered into the PC by
the engineer are expected to be delivered to the sites speedily. The ladder diagram, the
function control program, and the HMI all exchange data through the real-time database.
In a word, the real-time database works as the bridge between the supervisory
computer and the PLC.

Besides, the real-time database also functions for data communication with external
I/O devices. Different from the historical database, all the data in the real-time database
are real-time data, namely, current values. The real-time database stores current values
of variables, including system variables and user-defined variables.

3.2 Basic Concepts

 Real-Time Database

The real-time database is a set of real-time data. Multiple real-time databases are

allowed in EASY. The main advantage of this is that the same data can be kept in various

real-time databases. In other words, the various real-time databases can function together

to increase the system efficiency.

 Data Group

Various data groups can be defined in a real-time database. The data of the same

category can be grouped together into one data group for better management and more

efficient inquiry. Data and sub-data groups can be defined in data groups to establish

hierarchical data structure.

 Real-Time Data

The real-time data defines all the data used by the HMI. The real-time data can

belong to a real-time database or a data group. When referencing, the real-time data is

referenced as “Name of the real-time database.Name of the real-time data”. Therefore,

the real-time data of the same database cannot share the same name (even though they

are of different data groups).

However, the real-time data can use alias. EASY supports data access in the

real-time database by alias.

3.3 Data Types

Types of the data in the real-time database are similar to those of variables used in
the programming language – the C language. The data types are defined based on the
syntax of the C language, and thus meet the basic programming requirements and needs.
Based on this similarity, the real-time data can be also called variables.

There are the following types of data in the real-time database:

 bit

The bit data can be used for digitals. It usually has one bit, and values 0 and 1.

EASY allows the bit data which has more than 1 digit; the data in EASY can be 1

to 7 digits.

Note: When adding the bit data, the data length is the number of digits.

 char

Similar to the signed char variable in the C language. This type of data is the

signed single-byte data.

 uchar

Similar to the unsigned char variable in the C language. This type of data is the

unsigned single-byte data.

 short

Similar to the short variable in the C language. This type of data is signed

double-byte data.

 ushort

Similar to the unsigned short variable in the C language. This type of data is

unsigned double-byte data.

 long

Similar to the long variable in the C language. This type of data is signed

double-byte data.

 ulong

Similar to the unsigned long variable in the C language. This type of data is

unsigned double-byte data.

 float

Similar to the float variables in the C language. This type of data is

single-precision floating point data.

 double

Similar to the double variable in the C language. This type of data is

double-precision floating point data.

 string

Similar to the character array in the C language. This type of data are character

strings with specific meaning. You can customize the data length. However,

similar to the C language, all string variables end with \0. Therefore, the actual

data length should be the data length minus 1.

 array

Similar to the array variable in the C language. The data length is the number of

data bytes. At present, this type of data can only be used for the script for

interface configuration and exteral C language programs.

3.4 Data Definitions

3.4.1 Naming Conventions

The naming conventions for the database, data array, and data are as follows:

1) Same naming conventions for the identifier of the C language, but with the Chinese

language supported. That is, the name starts with a letter, the underscore, or a Chinese

character, and then is followed by letters, numbers, the underscore or Chinese

characters.

2) The database name, data array name, and data name are all case sensitive.

3) Names for data arrays and data of the same database must be different.

4) The following database names are reserved for the system internal use only, and

thus are not available for user selection:

system, redundancy, hmi_system_set, printer, syskeyboard, redund_vars, and

all database names starting with EASY.

3.4.2 Definition of the Database

3.4.2.1 Creating a Database

To create a database, do as follows:

1) In the Project Manager window, right-click on Real-Time Database, and you will

see a right-click menu as shown in Figure 3.1.

Figure 3.1

2) Select Add a Database, and you will see a dialog box as shown in Figure 3.2.

Figure 3.2

3) Type in a data as the database name; for example, testbase1.

4) Click on OK.

And a database named testbase1 is created. Make sure to check the

Synchronize this database when multiple-device communication occurs

option, so that the data in the database testbase1 will be synchronized when

redundant communication occurs between multiple HMIs.

3.4.2.2 Deleting a Database

To delete a defined database, do as follows:

1) On the left side of the Project Manager window, right-click on a database you

want to delete, as shown in Figure 3.3.

Figure 3.3

2) Select Delete a Database, and you will see a dialog box as shown in Figure 3.4.

Figure 3.4

3) Click on OK, and the selected database will be deleted.

3.4.3 Definition of the Data Group

3.4.3.1 Creating a Data Group

After creating a database, you can categorize the data into different data groups. Do

as follows:

1) Right-click on the created database called database1, as shown in Figure 3.5.

Figure 3.5

2) Select Create a Data Group, and you will see a dialog box as shown in Figure

3.6.

Figure 3.6

3) Type in a name for the data group test_data1, and click on OK.

A data group called test_data1 is created.

3.4.3.2 Deleting a Data Group

To delete a data group, do as follows:

1) Right-click on a data group, for example, test_data1, as shown in Figure 3.7.

Figure 3.7

2) Select Delete a Data Group, and you will see a dialog box as shown in Figure 3.8.

Figure 3.8

3) Click on OK, and then the data group test_data1 is deleted.

3.4.4 Definition of the Real-Time Data Variable

3.4.4.1 Adding Real-Time Data

To add data into a real-time database, do as follows:

On the left side of the Project Manager window, select the database created earlier

database1, and then right-click in the list pane on the right side of the window.

To add data into a data group (The data in the data group and that in the database

must not share the same name.), do as follows:

1) Select the database test_data1 from the left side of the Project Manager window.

2) Right-click in the list pane on the right side of the window, as shown in Figure 3.9.

Figure 3.9

3) Select Add Data, and you will see a dialog box as shown in Figure 3.10.

Figure 3.10

4) In Figure 3.10, set the data properties according to the definitions below:

 Data Name: Unique name for a data variable used in an application. Data

variables of the same database must not share the same names. Names of

data variables are case sensitive. Click anywhere in the text box to edit the

property; for example, to type in the variable name.

 Data Type: To define the type of the data. Click on the arrow down button to

select a data type from the drop-down list.

 Data Length: The data length varies from variable to variable. For example,

for a long data, you can define the data length to four bytes. You can define

the data length for the other variables similarly.

 Default Value: To define the default value of variables. The default value is

necessary in many situations. For example, when you design a ladder

diagram, you need to define a timer; the timer timing uses the default value.

 Alias: To give the real-time data in the real-time database another name as

identifier. When you refer to this alias, you are actually refering the original

data. To use the alias, check the Alias checkbox, and type in the alias of the

data (namely, the original data name). Click on OK, and a real-time data is

created in the database.

3.4.4.2 Deleting Real-Time Data

To delete real-time data, do as follows:

1) Right-click on the real-time data you want to delete, and you will see a right-click

menu as shown in Figure 3.11.

Figure 3.11

2) Select Delete Data, and you will see a dialob box as shown in Figure 3.12.

Figure 3.12

3) Click on OK, and the real-time data will be deleted.

3.4.4.3 Modifying Data

To modify real-time data, do as follows:

1) Right-click on the real-time data you want to modify, and you will see a right-click

menu as shown in Figure 3.13.

Figure 3.13

2) Select Modify, and you will see a dialog box as shown in Figure 3.14.

Figure 3.14

3) Do the modifications, and click on OK to save them.

3.4.4.4 Adding Batch Data

You can add a batch of data in the real-time database at a time, which saves the
trouble of repeatedly defining data.

Names of the batch data must follow the following naming conventions:
The names of all the data in the batch must start with the same prefix and end with

continuously incremental integers.
This section takes adding a batch of 7 data test5 to test11 into the database for

example, to explain how to add batch data.

1) On the left side of the Project Manager window, select the real-time database

into which you are going to add the batch data, and then right-click in the list pane

on the right side of the window, as shown in Figure 3.15.

Figure 3.15

2) Select Batch Data, and you will see a dialog box as shown in Figure 3.16.

Figure 3.16

The parameters in Figure 3.16 are described as follows:
 Data Name: The common prefix for the names of the batch data. It is test in this

example.
 From … To …: Start and end values of the integer suffix for the names of the

batch data. They are 5 and 11 in this example.
For descriptions about the other parameters, see section 3.4.4.1 Adding Real-Time
Data.

3.5 Data Referencing

The data defined in the real-time database can be referenced directly in the interface
configuration script.

Follow the rules below for data referencing:

1) If the data is not a parameter of a system function, refer to the data as $Database

Name.Data Name. For example, you can refer to the data data1 of the database

test as $test.data1.

2) If the data is a parameter of a system function and the data is a string, refer to the

data as Database Name.Data Name. (To be noted, no $ in the front.) For

example, data_input_window(“test.data1”, “test”, 0, 100, 0).

3.6 System Variables of EASY

EASY has some internally defined data variables which are called system variables of
the EASY configuration software. You can directly use these system variables for
configuration. You can also use them for accessing or modifying the EASY internal system
parameters, so as to implement some specific functions.

Chapter 4 Interface Database

4.1 Overview

Besides the real-time database, the EASY system also provides the interface

database. Different from the real-time database, the data in the interface database can

only be used during interface configuration; they cannot be used in the ladder diagram,

real-time or historical records, alarms, or device configuration.

Data types and naming conventions for the interface database are the same as for

the real-time database. For details, please see sections 3.3 and 3.4.1.

The interface database contains two types of data, real-time associated data and

user-defined data, which will be described in details in the following sections.

4.2 Real-Time Associated Data

The real-time associated data must be associated with a certain data in the real-time

database. There is one-to-one mapping relatsionship between the real-time associated

data and the original real-time data to which it is associated. In other words, any

modifications on the real-time associated data will be reflected on the original real-time

data in the real-time database, and vise versa.

Defining the real-time associated data provides the following two advantages:

1) Defining a cycle time for each real-time associated data.

Usually, the system obtains all the real-time data from the real-time database and

uploads them to the interface according to the default cycle time. In the EASY system,

you can define the cycle time through the system variable system.HmiDefCycleTime,

and the default cycle time is 500ms.

However, some data might have special characteristics. For example, some data

might be changing fast, and thus needs to be refreshed and then uploaded to the

interface more frequently. In this case, you can define a cycle time especially for these

data; the system then refreshes the value of such data in the real-time database and

uploads the data to the interface at the defined cycle time. Meanwhile, the refreshing and

uploading for the other data still follow the default cycle time.
2) Accessing the data with the data name only, instead of with the database name

as well.

For details, see section 4.4 Data Referencing.

4.2.1 Adding Data

To add a real-time associated data, do as follows:

1) On the left side of the Project Manager window, select Real-Time Associated Data,

and right-click in the list pane on the right of the window, as shown in Figure 4.1.

Figure 4.1

2) Select Add Data, and you will see a dialog box as shown in Figure 4.2.

Figure 4.2

In Figure 4.2, set the data properties according to the definitions below:

 Data Name: Unique name for identifying a data variable used in an application.
The data variables of the same database must have different names. Names of
data variables are case sensitive.

 Database Name: Name of the database which contains the real-time data to
which the real-time associated data is associated.

 Variable Name: Name of the data variable in a real-time database to which the
real-time associated data is associated.

You can also click on the button on the right side to select the database

name and variable name of the data to which the real-time associated data is
associated.

 Cycle Time: To define the cycle time for refreshing the real-time associated
data.

4.2.2 Deleting Data

To delete a real-time associated data, do the following:

1) Right-click on the real-time data you want to delete, and you will see a right-click menu

as shown in Figure 4.3.

Figure 4.3

2) Select Delete Data, and you will see a dialog box as shown in Figure 4.4.

Figure 4.4

3) Click on OK, and the selected real-time associated data is deleted.

4.2.3 Modifying Data

To modify a real-time associated data, do as follows:

1) Right-click on the real-time data you want to modify, and you will see a right-click

menu as shown in Figure 4.5.

Figure 4.5

2) Select Modify, and you will see a dialog box as shown in Figure 4.6.

Figure 4.6

3) After you complete modifying the data, click on Save to save the modifications.

4.3 User-Defined Data

The user-defined data is only used for interface configuration. It is unnecessary to

associate this type of data with the data in the real-time database. Besides, accessing the

user-defined data from the interface database is much faster than accesing the data from

the real-time database.

Therefore, for the data which is only used for interface control but not for the ladder

diagram, real-time or historical recordings, alarms, or device configuration, it is

recommended to define them as user-defined data in the interface database.

This following sections describe how to define the user-defined data in details.

4.3.1 Adding Data

To add a user-defined data, do as follows:

1) On the left side of the Project Manager window, select User-Defined Data and

right-click in the list pane on the right side of the window, as shown in Figure 4.7.

Figure 4.7

2) Select Add Data, and you will see a dialog box as shown in Figure 4.8.

Figure 4.8

In Figure 4.8, set the data properties according to the definitions below:

 Data Name: Unique name for identifying a data variable used in an application.
The data variables of the same database must have different names. Names of
data variables are case sensitive. Click anywhere inside the text box to start
typing. If you are a project engineer, you can type in here the variable name.

 Data Type: Type of the data. Click on the arrow down button to select from the
list of data types provided for your selection.

 Data Length: The length of the data varies from variable to variable. For
example, the data length for a long data is 4 bytes. The data length for the other
types of data follows the specific rules accordingly.

 Initial Value: Initial value of a variable. It is necessary to set an initial value. For
example, the timer of a ladder diagram needs an initial value for the timing.

4.3.2 Deleting Data

To delete a user-defined data, do as follows:

1) Right-click on a real-time data you want to delete, and you’ll see a right-click menu as

shown in Figure 4.9.

Figure 4.9

2) Select Delete Data, and you will see a dialog box as shown in Figure 4.10.

Figure 4.10

3) Click on OK, and the selected user-defined data is deleted.

4.3.3 Modifying Data

To modify a user-defined data, do as follows:

1) Right-click on a user-defined data, and you will see a right-click menu as shown in

Figure 4.11.

Figure 4.11

2) Select Modify, and you will see a dialog box as shown in Figure 4.12.

Figure 4.12

3) Click on OK to save all the modifications.

4.4 Data Referencing

Different from refering to the data of the real-time database, it is unnecessary to
define the database name while refering to the data of the interface database. Please
follow the two rules below:

1) When the data does not work as a system function, refer to the data as $Data

Name. For example, you can use $pic_data1 to refer to the data pic_data1
of the interface database.

2) When the data works as a system function and the data is of the string data
type, refer to the data as Data Name. (To be noted, no $ in the front.) For
example, data_input_window(“pic_data”, “test”, 0, 100, 0).

Chapter 5 Interface Configuration

EASY provides convenient, flexible, and powerful interface configuration functions.
EASY supports various basic graphic controls, such as:

 Rectangles (including incremental rectangles)
 Lines
 Ovals (including circles)
 Images
 Text
 Buttons
 Checkboxes
 Drop-down boxes
 Timers
 Trend curve windows
 Alarm windows, and
 Historical lists

Besides, EASY provides a graphics library, which has controls that might be used in
various industries, such as pumps, pedestal actuators, and digitrons.
You can easily configure the properties of these controls. Some of the properties are
called dynamic properties, which means they change dynamically during the
operation. These dynamic properties use the standard C language scripts. In other
words, they not only follow the syntax of the C language, but also support the
functions from the function library of the C language. Because of all this, EASY is
highly flexible and can achieve a rich variety of functions which are impossible for the
traditional configuration methods.

5.1 Interface Windows

EASY allows configuring graphic interfaces for an application based on windows.

After creating a window, you can add various types of graphic objects into it and define

their properties, so as to achieve nice and vivid dynamic interfaces of different styles.

5.1.1 Naming Conventions

Names of windows follow the following naming conventions:

1) Naming rules for identifiers of the C language: Chinese not supported; starting

with letters which are followed by letters, digits, or underscores.

2) Window names are case sensitive.

3) The following window names are reserved for the system internal use only, and

thus are not available for user selection:

sys_set_time_wnd, sys_link_timeout_wnd, hmi_sys_set_wnd, and all window

names starting with EASY.

5.1.2 Creating an Interface Window

To create an interface window, do as follows:

1) On the left side of the Project Manager window, select Interface and then

right-click in the list pane on the right side, as shown in Figure 5.1.

Figure 5.1

2) Select Add an Interface, and you will see a dialog box as shown in Figure 5.2.

Figure 5.2

In Figure 5.2, set the interface parameters according to the definitions below:
 Name: Name of the new interface window; unique identifier of a window. All the

windows in the EASY system have different names.
 Title: Title of the new interface window. After you set the title property to Display

the title, and then this title will be displayed as the window title.
 File Name: The EASY system saves all the window-related property information

into an xml file. This parameter defines the name of the xml file.
 The Display at application startup checkbox: If you check this checkbox, the

window name, title, and the xml file name will be displayed at the application
startup; otherwise, they will not be displayed.

 The Auto create file checkbox: If you check this checkbox, the system will
automatically create an xml file and save the window-related information to that
xml file; otherwise, the system will allow associate this window to an existing xml
file rather than creating a new xml file.

 The Disable the interface checkbox: If you check this checkbox, the system will
not display the interface and all graphic components on this interface. In addition,
none of the related dynamic properties and scripts will not be executed.

5.1.3 Deleting an Interface Window

To delete an interface window, do as follows:
1) On the left side of the Project Manager window, select Interface and then

right-click on a window name you want to delete in the list pane on the right side

of the window.

You will see a right-click menu as shown in Figure 5.3.

Figure 5.3

2) Select Delete an Interface, and the selected interface window will be deleted

from the system.
Note: After you select Delete an Interface, only the interface window is deleted from

the project configuration; the xml file which stores the window-related information is not
deleted from the system.

5.1.4 Modifying the Window Configuration

To modify the configuration of an interface window, do as follows:
1) On the left side of the Project Manager window, select Interface and then

right-click on a window for which you want to modify the configuration in the list

pane on the right side of the window.

You will see a right-click menu as shown in Figure 5.4.

Figure 5.4

2) Select Modify to modify the window configuration.

5.1.5 Editing an Interface Window

To edit an interface window, do as follows:
1) On the left side of the Project Manager window, select Interface and then

double-click (or right-click) on a window which you want to edit in the list pane on

the right side of the window.

You will see a menu as shown in Figure 5.4.

Figure 5.5

2) Select Edit, and you will see the Interface Editor window as shown in Figure 5.6.

Figure 5.6

In this Interface Editor window, you can add graphic components, set static and
dynamic properties for the added graphic components, or implement other interface
configuration tasks.

5.2 Interface Editor

On the left side of the Project Manager window, select Interface and then
double-click (or right-click) on a window which you want to edit in the list pane on the right
side of the window. Select Edit, and you will see the Interface Editor window, as shown
in Figure 5.6.

5.2.1 Adding a Graphic Component

On the left side of the Interface Editor window is the toolbox area, which lists the
basic graphic controls supported by the system and the Graphics Library button as well.

To add a basic graphic control, you just need to select the graphic component with a
left click.

To add a control from the graphics library, do as follows:
1) Click on the Graphics Library button, and you will see the Select from Library

window as shown in Figure 5.7.

Figure 5.7

2) Select a graphic control you want to add from the graphics library and click on

OK.

3) Move the cursor to the editting area on the right side of the toolbox area in the

Interface Editor window.

And you will see the cursor becomes a cross.

4) Click anywhere in the editting area to add the graphic control.

5.2.2 Deleting a Graphic Component

To delete a graphic component, select a graphic control you want to delete, and press
the Delete key from your keyboard. And the selected graphic component will be deleted.

5.2.3 Layout of Graphic Components

In the Interface Editor window, select the Format menu, and you can see all the
function menus related to layout of graphic components.

5.2.3.1 Selecting Multiple Graphic Components

You can select multiple graphic objects in the following two ways:

 Using the Ctrl key. Do as follows:

1) Select any one graphic object with a left click.

2) Press and hold the Ctrl key on your keyboard while clicking on any other graphic

object.

 By dragging the mouse. Do as follows:

1) Place the cursor in a point where all the target graphic objects can be covered

when you drag the mouse.

2) Click on the top left, top right, bottom left, or bottom right rectangle of a graphic

object by pressing the left button of the mouse.

3) Drag the mouse across the target graphic objects.

You will see a big rectangle in dot lines covering all the target graphic objects.

4) Release the mouse.

All the graphic objects inside the dot-lined rectangle are selected.

Each selected graphic object has 8 small rectangles on its sides. But among all the

selected objects, only one object has solid rectangles, while the others are all hollow. The

following formatting operations are all implemented on the graphic object with the solid

rectangles.

5.2.3.2 Formatting Graphic Components - Alignment

In the Interface Editor window, select Format and then Alignment, and you can see
a list of cascading menus which are described in the table below.

Menu Description

Top Alignment Aligns multiple selected objects with the top border of the topmost object.

To achieve top alignment, select multiple graphic objects, and then select Format >

Alignment > Top Alignment.

Center

Alignment

Aligns two or more graphic objects by putting their centers on the same vertical line.

To achieve center alignment, select multiple graphic objects, and then select Format >

Alignment > Center Alignment.

Bottom

Alignment

Aligns two or more selected objects with the bottom border of the bottom-most object.

To achieve bottom alignment, select multiple graphic objects, and then select Format >

Alignment > Bottom Alignment.

Left Alignment Aligns two or more selected objects with the left border of the left-most object.

To achieve left alignment, select multiple graphic objects, and then select Format >

Alignment > Left Alignment.

Right

Alignment

Aligns two or more selected objects with the right border of the right-most object.

To achieve left alignment, select multiple graphic objects, and then select Format >

Alignment > Right Alignment.

Select the alignment menus described in the table above, and you will see the

different effects as shown below:

Figure 5.8 Before executing Bottom Alignment

Figure 5.9 After executing Bottom Alignment

Figure 5.10 Before executing Left Alignment

Figure 5.11 After executing Left Alignment

Figure 5.12 Before executing Center Alignment

Figure 5.13 After executing Center Alignment

5.2.3.3 Formatting Graphic Components - Measurement

In the Interface Editor window, select Format and then Measurement, and you can
see a list of cascading menus which are described in the table below.

Menu Description

Same Width Sets multiple selected objects to the same width.

To achieve same width, select multiple graphic objects, and then select Format >

Measurement > Same Width.

Same Height Sets multiple selected objects to the same height.

To achieve same height, select multiple graphic objects, and then select Format >

Measurement > Same Height.

Same Width and

Height

Sets multiple selected objects to the same width and height.

To achieve same width and height, select multiple graphic objects, and then select

Format > Measurement > Same Width and Height.

5.2.3.4 Formatting Graphic Components - Spacing

In the Interface Editor window, select Format and then Spacing, and you can see a
list of cascading menus which are described in the table below.

Menu Description

Horizontal

Spacing\Same Spacing

Sets the horizontal spacing between the multiple selected objects to the same.

To achieve same horizontal spacing, select multiple graphic objects, and then

select Format > Horizontal Spacing > Same Spacing.

Vertical Spacing \Same

Spacing

Sets the vertical spacing between the multiple selected objects to the same.

To achieve same vertical spacing, select multiple graphic objects, and then

select Format > Vertical Spacing > Same Spacing.

5.2.3.5 Formatting Graphic Components - Layering

In the Interface Editor window, select Format and then Layering, and you can see a
list of cascading menus which are described in the table below.

Menu Description

Move to Top Moves one or more selected objects to the top layer as the foreground for the

overlapped graphic objects.

Move to

Bottom

Moves one or more selected objects to the bottom layer as the background for the

overlapped graphic objects.

The two graphic components in Figure 5.14 are overlapped. The incremental

rectangle is behind the incremental oval. To move the incremental rectangle to the front of

the incremental oval, you need to right-click on the incremental rectangle and select Move

to Top.

Figure 5.14 shows how the objects look like before the Move to Top command is

executed; Figure 5.15 shows how they look like after the Move to Top command is

executed.

Figure 5.14

Figure 5.15

5.3 Properties of Graphic Components

5.3.1 Overview

Select a graphic component, and the properties of this graphic component will be
listed on the right side of the Interface Editor window, as shown in Figure 5.16.

Figure 5.16

Some properties have a small rectangle at the right-most side, as shown in

Figure 5.16. Click on the small rectangle , and you can set the expression or dynamic

script for this property. In this case, the value of the property will change during the
operation. This type of properties are thus called dynamic properties. Once a property is

configured as dynamic, the small rectangle will become red .

The property list is composed of the following five parts:
 Graphic Components Drop-Down List Box: Lists all the graphic components

contained in the current window. You can select graphic components from this
drop-down list for configuration or modification.

 Basic Properties: Common properties shared by all graphic components, such
as Top, Bottom, Left, Right, Width, and Height.

 Events: Events supported by the selected graphic component. You can compile
the event script, which can be executed when the corresponding event occurs.

 Graphic-Control Specific Properties: Each graphic control component has its
own specific properties, which vary from component to component.

 Property Description: A brief description of a selected property is displayed at
the bottom of the Property List pane.

Considering that basic properties are those shared by all control components, section

5.3.3 will be focusing on describing them. However, most basic properties and
control-specific properties can be configured as dynamic. Therefore, dynamic properties
will be introduced first.

5.3.2 Dynamic Properties

5.3.2.1 Dynamic Color Properties

Configure the dynamic Color properties in the Dynamic Color Properties Setting
dialog box as shown in Figure 5.17.

Figure 5.17

1. If you select Dynamic Property Type as Digital, you will see the
configuration dialog box as shown in Figure 5.18.

Figure 5.18

The configuration parameters are described as follows:
 Variable or Expression: Covers all the bit database variables or all the

expressions with the return value as bit.
 Digital Setting/On: Sets the color used when the bit variable or value of the

expression is not 0 (TRUE).
 Digital Setting/Off: Sets the color used when the bit variable or value of the

expression is 0 (FALSE).

2. If you select Dynamic Property Type as Analog, you will see the

configuration dialog box as shown in Figure 5.19.

Figure 5.19

The configuration parameters are described as follows:
 Variable or Expression: Covers all the int/float database variables and all the

expressions with the return value as int/float.
 Analog Setting: Sets the threshold value for the analog. This parameter sets the

colors used when the analog threshold is more than or equal to a specific value.
Note: Threshold values must be set incrementally from small to big.
For example:

Default color: Black;
10: Red;
20: Green

Which means:
1) When the analog is < 10, the default color (black) is displayed;
2) When the analog is >= 10 and < 20, the red color is displayed;
3) When the analog is >=20, the green color is displayed.

3. If you select Dynamic Property Type as Customized Expression, you will

see the configuration dialog box as shown in Figure 5.20.

Figure 5.20

The configuration parameter Variable or Expression is described as follows:
You can directly type an expression requesting that he return value of the expression
must be an RGB value.
For example, $test1.data2 > 10 ? 0x0000FF : 0x00FF00.
Which means:

1) When the analog $test1.data2 is > 10, the color is red (0x0000FF stands for the
RGB value for the red color);
2) When the analog $test1.data2 is <= 10, the color is green (0x00FF00 stands for
the RGB value for the green color).

4. If you select Dynamic Property Type as Dynamic Script, you will see the
configuration dialog box as shown in Figure 5.21.

Figure 5.21

You can type the dynamic script in the editting area, requesting that the return value
of the dynamic script is an RGB value.

For example:
if ($test1.data2 > 10)
{
 return 0x0000FF;
}
else
{
 return 0x00FF00;
}

Which means:
1) When the analog $test1.data2 is > 10, the color is red (0x0000FF stands for

the RGB value for the red color);
2) When the analog $test1.data2 is <= 10, the color is green (0x00FF00 stands

for the RGB value for the green color).

5.3.2.2 Dynamic Text Properties

Configure the dynamic Text properties in the Dynamic Text Properties Setting
dialog box as shown in Figure 5.22.

Figure 5.22

1. If you select Dynamic Property Type to Expression, you will see the
configuration dialog box as shown in Figure 5.23.

Figure 5.23

The configuration parameters are described as follows:
 Variable or Expression: The database variable or the expression to which a

graphic control component is associated.
 Expression Type, Number of Integers, and Number of Decimals: Controls

how the variable or value of the expression is displayed as text.
See the following table for detailed description.

Expression

Type

Number of Integers Number of Decimals Remarks

Int N/A

Float

Double

Minimum number of integers to be displayed.

 When the number of integers is less

than enough, 0 is added on the left to

make enough number of integers.

 When the number of integers is more

than required, only the specified

number of integers will be displayed.

 If you define Number of Integers to 0,

all the actual integers will be displayed.

Fixed number of decimals to be displayed.

 When the number of decimals is less

than enough, 0 is added on the right to

make enough number of decimals.

 When the number of decimals is more

than required, only the specified

number of decimals will be displayed.

 If you define Number of Decimals to 0,

only integers will be displayed;

decimals not.

The value of

the variable or

expression

must be

numeric, but

not string.

String N/A N/A The value of

the variable or

expression

must be string,

but not

numeric.

2. If you select Dynamic Property Type to Dynamic Script, you will see the

configuration dialog box as shown in Figure 5.24.

Figure 5.24

You can type the dynamic script in the editting area, requesting that the return value
of the dynamic script must be a string.

For example:
if ($test1.data2 > 10)
{
 return “aaaa”;
}
else
{
 return “bbbb”;
}

Which means when the analog $test1.data2 is > 10, the text displayed is aaaa;
otherwise, the text displayed is bbbb.

5.3.2.3 Other Dynamic Properties

For properties other than the Color or Text property, configure the dynamic
properties in the Dynamic Properties Setting dialog box as shown in Figure 5.25.

Figure 5.25

1. If you select Dynamic Property Type as Expression, you will see the
configuration dialog box as shwon in Figure 5.26.

Figure 5.26

The configuration parameter Expression is described as follows:
The expression to which a graphic control component is associated. The return value
of the expression varies according to the specific characteristics of the property.

2. If you select Dynamic Property Type as Dynamic Script, you will see the

configuration dialog box as shwon in Figure 5.27.

Figure 5.27

You can type the dynamic script in the editting area. The return value of the dynamic
script varies according to the specific characteristics of the property.

5.3.3 Basic Properties

5.3.3.1 Name

Names of graphic control components in a window must be unique. No dynamic
properties involved.

5.3.3.2 Location

The location properties are those related to the location of a graphic component,
including left, top, right, bottom, width, and height. You can configure the left, top, right,
and bottom properties dynamic; no dynamic properties for width and height. During the
on-site operation, the width and height of a graphic component adjust automatically when
the left, top, right, and bottom properties change.

When configuring dynamic properties for the left, top, right, and bottom properties,
make sure that the return value of the associated expression or dynamic script is numeric.

5.3.3.3 Visibility

The visibility property defines whether a graphic component is visible. You can

configure this property dynamic.
When configuring the dynamic visibility property, make sure that the return value of

the associated expression or dynamic script is bit.
When the return value is 0 (FALSE), the graphic component is invisible; when it is not

0 (TRUE), the graphic component is visible.

5.3.3.4 Enability

The enability property is indicated by an enability flag. It defines whether to execute

event scripts of a graphic component. You can configure this property dynamic.

When configuring the dynamic enability property, make sure that the return value of

the associated expression or dynamic script is bit.

When the return value is 0 (FALSE), the enability flag is off; when it is not 0 (TRUE),

the enability flag is on.

5.3.3.5 Flashing

The are two flashing properties: flashing and flashing speed. The flashing speed

property defines how fast the flashing goes; the smaller the value, the faster the flashing.

Both properties can be configured dynamic.

When configuring the dynamic flashing property, make sure that the return value of

the associated expression or dynamic script is bit. When the return value is 0 (FALSE), the

graphic component does not flash; when it is not 0 (TRUE), the graphic component

flashes.
When configuring the dynamic flashing speed property, make sure that the return

value of the associated expression of dynamic script is numeric.

5.3.3.6 Redrawing

The redrawing property defines whether to automatically redraw a graphic

component when properties of the graphic component change. For purposes of

minimizing CPU utilization and improving system efficiency, graphic components are not

set to be automatically redrew whenever the display of the graphic component is not

affected. This property can be configured dynamic.

When configuring the dynamic property, make sure that the return value of the

associated expression or dynamic script is bit.

When the return value is 0 (FALSE), the graphic component will be redrew

automatically; when it is not 0 (TRUE), the graphic component will not be redrew

5.3.3.7 Positioning

There are two positioning properties: horizontal and vertical. They define the
horizontal and vertical positioning of a graphic component in a window.

When these two properties are modified, the changes actually are reflected on the left
and top properties. When you modify the left or top property without modifying the right or
bottom property, the right or bottom property of the graphic component does not change;
instead, the width or height of the graphic component changes automatically. However,
different from modifying the left or top property, modifying the horizongtal or vertical
positioning property does not change the width or height of a graphic component; instead,
the right or bottom property of the graphic component changes automatcially.

When configuring the dynamic horizontal and vertical positioning properties, make
sure that the return value of the associated expression of dynamic script is numeric.

5.3.4 Control-Specific Properties

5.3.4.1 Window

Property Description Remarks on Dynamic

Properties

Title Defines whether the window title is displayed.

When you select Display the title, the title entered during the

creating of a new interface window in Project Manager will be

displayed as the window title.

Centering Defines whether the window is centered in the screen.

Background

Color

Defines the background color of the window.

Security Level

Security

Handling

See Chapter 15 Access Management.

No dynamic properties for

windows.

5.3.4.2 Rectangle

Property Description Remarks on Dynamic

Properties

Frame

Color

Sets the color of the frame of the rectangle.

Filling

Color

Sets the color of filling of the rectangle.

The return value of the

expression or dynamic script is

an RGB value.

5.3.4.3 Line

Property Description Remarks on Dynamic Properties

Color Sets the color of lines. The return value of the expression

or dynamic script is an RGB value.

Line

Width

Sets the width of lines. The return value of the expression

or dynamic script is int.

Direction Sets the direction of lines; for example, from top left to

bottom right or from bottom left to top right.

The return value of the expression

or dynamic script is 1 or 2:

 1: from top left to bottom right

 2: from bottom left to top right

Type Sets the type of lines; for example, solid lines, dotted

lines, or dashed lines.

The return value of the expression

or dynamic script is 1, 2 or 3:

 1: solid lines

 2: dotted lines

 3: dashed lines

5.3.4.4 Oval

Property Description Remarks on Dynamic

Properties

Frame color Sets the color of the frame of the oval.

Filling color Sets the color of the filling of the oval.

The return value of the expression

or dynamic script is an RGB value.

5.3.4.5 Text

Property Description Remarks on Dynamic Properties

Color Sets the color of the text. The return value of the expression or

dynamic script is an RGB value.

Text Sets the text content. See section 5.3.2.2 Dynamic Text

Properties.

Text Length Defines the maximum text length (number of bytes). No dynamic properties.

Alignment Defines how the text is aligned. The return value of the expression or

Property Description Remarks on Dynamic Properties

dynamic script is 1, 2, or 3:

 1: Left Alignment

 2: Right Alignment

 3: Center Alignment

Font Size Defines the font size. The return value of the expression or

dynamic script is int:

 0: Default font size

 Other: User-defined font size

5.3.4.6 Image

Property Description Remarks on Dynamic

Properties

File Name Defines the name of the image file.

When you select an image file not stored in the project

directory, the system automatically copies the file to

the project directory. And then the image control

automatically associates the copied image file.

If you edit an original image file not stored in the

project directory, the changes will not be automatically

reflected in the image control. In this case, you need

to manually add the editted image file.

The return value is a string with

the name of the image file (file

path not included).

The image file must be stored in

the project directory.

Loading Mode Defines how the image is loaded.

 At startup: The image is loaded at the startup of

the application. Once loaded, the image is kept

in the memory. In this way, the image is loaded

quite fast during the application operation.

However, it reduces the speed of the application

startup. Besides, it utilizes the memory

considerably.

 During operation: The image is loaded during the

application operation. In this way, the image is

loaded into the memory only when it is

necessary to display the image. In other words,

the memory utilized by loading the image will be

released when it is not necessary to display the

image. This loading mode ensures faster

application startup, and reduces the memory

utilization. However, the speed for loading the

image is very slow.

The return value is 1 or 2:

 1: At startup

 2: During operation

Transparency Defines whether to make the image background

transparent.

The return value is 0 or 1:

 0: Not transparent

 1: Transparent

Property Description Remarks on Dynamic

Properties

Transparency

Color

Defines the color of the transparent background. The return value of the expression

or dynamic script is an RGB value.

5.3.4.7 Incremental Rectangle

Property Description Remarks on Dynamic

Properties

Start Color Defines the start color for the incremental color

change.

End Color Defines the end color for the incremental color

change.

The return value of the expression

or dynamic script is an RGB value.

Direction Defines the direction of the incremental color change. The return value of the expression

or dynamic script is 32 or 47:

 32: Horizontal > Center> Left

and Right

 47: Left > Bottom > Right >

Top > Center

Drawing an incremental rectangle utilizes too much CPU resources. Therefore, it is

not recommended to draw big incremental rectangles during configuration; for example, to
draw an incremental rectangle which covers the whole window.

5.3.4.8 Incremental Oval

Property Description Remarks on Dynamic

Properties

Start Color Defines the start color for the incremental color

change.

End Color Defines the end color for the incremental color

change.

The return value of the expression

or dynamic script is an RGB value.

Direction Defines the direction of the incremental color change. The return value of the expression

or dynamic script is 0 or 2:

 0: Horizontal > Center> Left

and Right

 2: Center > circumference

Drawing an incremental oval utilizes too much CPU resources. Therefore, it is not
recommended to draw big incremental ovals during configuration; for example, to draw an
incremental oval which covers the whole window.

5.3.4.9 Incremental Triangle

Property Description Remarks on Dynamic

Properties

Start Color Defines the start color for the incremental color

change.

End Color Defines the end color for the incremental color

change.

The return value of the expression

or dynamic script is an RGB value.

Direction Defines the direction of the incremental color change. The return value of the expression

or dynamic script is 1 or 4:

 1: Upward

 4: Towards the left

Drawing an incremental triangle utilizes too much CPU resources. Therefore, it is not

recommended to draw big incremental ovals during configuration; for example, to draw an
incremental triangle which covers the whole window.

5.3.4.10 Timer

Property Description Remarks on Dynamic

Properties

Timing

Interval

Defines the timing interval for the timer (unit: ms).

When the scheduled time is reached, the system will

execute the script defined in the Timing event.

Note: The timer is timing constantly as long as the

system is running. It has nothing to do with whether

the window with the timer is displayed or not.

No dynamic properties.

5.3.4.11 Data Input

Property Description Remarks on Dynamic

Properties

Variable

Name

Defines the name of a database variable to which this

graphic control is associated.

This variable is numeric instead of string.

No dynamic properties.

Color Defines the color in which the data is displayed. The return value of the expression

or dynamic script is the RGB value

of the defined color.

Number of

Integers

Defines the minimum number of integers to be

displayed.

 When the number of integers is less than

enough, 0 is added on the left to make enough

number of integers.

The return value of the expression

or dynamic script is int.

Property Description Remarks on Dynamic

Properties

 When the number of integers is more than

required, only the specified number of integers

will be displayed.

 If you define Number of Integers to 0, all the

actual integers will be displayed.

Number of

Decimals

The meaning of this property varies according to the

type of the database variable to which the Data Input
graphic control is associated.

1. When the variable type is float, this property

defines a fixed number of decimals to be

displayed.

 When the number of decimals is less than

enough, 0 is added on the right to make

enough number of decimals.

 When the number of decimals is more than

required, only the specified number of

decimals will be displayed.

 If you define Number of Decimals to 0,

only integers will be displayed; decimals

not.

When the variable type is int, this property means the

same as the description for Number of Integers. For

details, see the above cell.

The return value of the expression

or dynamic script is int.

Minimum

Value

Defines the minimum value of the data input. The return value of the expression

or dynamic script is numeric.

Maximum

Value

Defines the maximum value of the data input. The return value of the expression

or dynamic script is numeric.

Prompt Defines the prompt information to be displayed as the

title of the Data Input window.

The return value of the expression

or dynamic script is string.

Password

Display

Defines how the password is displayed:

 If you set this property as Password Display,

the password entered in the Data Input window

will be displayed as a string of *.
 Otherwise, the password entered is displayed as

how it is.

The return value of the expression

or dynamic script is bit.

Alignment Defines how the data is aligned. The return value of the expression

or dynamic script is 1, 2 or 3:

 1: Left Alignment

 2: Right Alignment

 3: Center Alignment

Font Size Defines the font size. The return value of the expression

or dynamic script is int:

Property Description Remarks on Dynamic

Properties

 0: Default font size

 Other ints: Defined font size

Integer Type This property is valid only when the database variable

to which the Data Input graphic control is associated

to is int.

The description below is only for int variables:

 If you select Standard (no decimals):

The Number of Decimals property becomes

invalid. Any entered decimals will be discarded

automatically. For example, if you enter 12.34,

the value of the associated int variable will be 12

and displayed as 12.

 If you select Decimals added automatically:

This property maps a entered float data (maybe

with decimals) to an int variable. The mapping

relationship is reflected on Number of

Decimals, as shown by the equation below:

Value of Variable = User Input * 10Number of Decimals

For example, when you set Number of

Decimals to 2, if you enter 12.34, then the value

of the associated int variable is 1234 (which is

12.34*102), and displayed as 12.34.

The return value of the

expressionor dynamic script is 0 or

1:

 0: Standard (no decimals)

 1: Decimals added

automatically

5.3.4.12 Text Input

Property Description Remarks on Dynamic

Properties

Variable

Name

Defines the name of a database variable to which this

graphic control is associated.

This variable is string.

No dynamic properties.

Color Defines the color in which the text is displayed. The return value of the expression

or dynamic script is the RGB value

of the defined color.

Prompt Defines the prompt information to be displayed as the

title of the Text Input window.

The return value of the expression

or dynamic script is string.

Password

Display

Defines how the password is displayed:

 If you set this property as password display, the

password entered in the Text Input window will

be displayed as a string of *.
 Otherwise, the password entered is displayed as

how it is.

The return value of the expression

or dynamic script is bit.

Alignment Defines how the text is aligned. The return value of the expression

Property Description Remarks on Dynamic

Properties

or dynamic script is 1, 2, or 3:

 1: Left Alignment

 2: Right Alignment

 3: Center Alignment

Font Size Defines the font size. The return value of the expression

or dynamic script is int:

 0: Default font size

 Other ints: Defined font size

5.3.4.13 Button

Property Description Remarks on Dynamic

Properties

Title Defines the title of a button. No dynamic properties.

5.3.4.14 Checkbox

Property Description Remarks on Dynamic

Properties

Title Defines the title of a checkbox. No dynamic properties.

Associated

Variable

Defines the database variable to which the Checkbox

graphic control is associated. This variable is int.

When the checkbox is checked, the value of the

associated variable becomes 1; otherwise, it is 0.

Accordingly, if you set the value of the associated

variable to 1, the checkbox will be checked; if you set

it to 0, the checkbox will not be checked.

The return value of the expression

or dynamic script is string.

The string refers to the name of

the variable to which the

Checkbox graphic control is

associated.

5.3.4.15 Combo Box

Property Description Remarks on Dynamic

Properties

Data in the

Drop-Down List

Defines the data to be displayed in the drop-down list

of a combo box.

A semi-colon ; is used between the data; for example,

aaa;bbb;ccc.

No dynamic properties.

Associated Variable Defines the database variable to which the Combo

Box graphic control is associated. This variable is int.

The value of the assocated variable refers to the serial

number of the data in the drop-down list. The serial

number starts from 0, followed by 1, 2… from top to

The return value of the expression

or dynamic script is string.

The string refers to the name of

the variable to which the Combo

Box graphic control is associated.

Property Description Remarks on Dynamic

Properties

bottom.

For example:

 When you select the first data in the drop-down

list of a combo box, the value of the associated

variable becomes 0;

 When you select the second data, the value of

the associated variable becomes 1;

 And so on and so forth.

Height of Data in the

Drop-Down List

Defines the height between any two data in the

drop-down list.

No dynamic properties.

5.3.4.16 Vector Text

Different from the Text control, the Vector Text control provides more fontsyou’re
your selection.

Property Description Remarks on Dynamic

Properties

Font Defines the font for the text. No dynamic properties.

Text Defines the text content. No dynamic properties.

Alignment Defines how the text is aligned. The return value of the expression

or dynamic script is 1, 2, or 3.

 1: Left Alignment

 2: Right Alignment

 3: Center Alignment

5.3.4.17 Alarm Window

See Chapter 10 Alarms.

5.3.4.18 Real-Time Trend

See Section 8.2 Real-Time Data Records.

5.3.4.19 Historical Trend

See Section 9.2 Historical Data Records.

5.3.4.20 Historical Data List

See Section 9.2 Historical Data Records.

5.3.4.21 Graphics Library

See Chapter 18 Gallery Controls.

5.3.5 Events

Based on categories of graphic control components, there are the following types of
events, as described in the following table.

Graphic Component Event Trigger Condition

Open When you open a window Window

Close When you close or hide a window

Timer Timing When the scheduled time is reached

Press When you press the left button of the mouse on a graphic

control

Other Controls

Release When you release the left button of the mouse on a graphic

control

5.4 System Variables for the Interface

Database

Name

Variable Name Data Type Default Value Description

HmiLoopCount ulong The count value of the interface

refresh.

The value of this variable adds 1 every

time the interface refreshes.

HideMainWindow bit The default value of this

variable is:

 0: Simulated

operation on PC

 1: Operation on

HMI

 1: Menus on the specified

Windows window are hidden.

 0: Menus on the specified

Windows window are displayed.

HmiHeartbeat bit The heart beat of the HMI during

operation.

The value of this variable changes

between 0 and 1 during the interface

refresh.

System

HmidbDefCycleTime ulong 500 The cycle time for the interface refresh

(unit: ms).

5.5 System Functions for the Interface

5.5.1 hmi_window_show

Original Function: int hmi_window_show(char *window_name)

Function Description: To show a specified window.

Return Values: 0 Failed

 1 Successful

Parameter: window_name: Name of the target window you want to display.

Example: hmi_window_show("test")

5.5.2 hmi_window_hide

Original Function: int hmi_window_hide(char *window_name)

Function Description: To close a specified window.

Return Values: 0 Failed

 1 Successful

Parameter: window_name: Name of the target window you want to close.

Example: hmi_window_hide("test")

5.5.3 hmi_window_show_modal

Original Function: int hmi_window_show_modal(char *window_name)

Function Description: To display a modal dialog box.

Return Values: 0 Failed

 1 Successful

Parameter: window_name: Name of a window.

Example: hmi_window_show_modal("test")

5.5.4 hmi_window_exit_modal

Original Function: int hmi_window_exit_modal(char *window_name)

Function Description: To exit the Modal dialog box. Call this function when you

want to exit a modal dialog box.

Return Values: 0 Failed

 1 Successful

Parameter: window_name: Name of a window.

Example: hmi_window_exit_modal("test")

5.5.5 data_input_window

Original Function: int data_input_window(char *varname, char *caption,

double minvalue, double maxvalue, int dec_num)

Function Description: Function for data input. When you call this function, the

Data Input window will be displayed. The data you enter in this

window will be assigned as the value for the parameter varname.

Return Value: 0 Failed

 1 Successful

Parameters: varname: Name of a variable. The data you enter in the Data Input

window will be assigned as the value for this parameter.

 caption: Prompt information to be displayed as the title of the Data

Input window.

 minvalue: Minimum value allowed for the data entered.

 maxvalue: Maximum value allowed for the data entered.

 dec_num: Number of decimals.

Example: data_input_window("test.data", "test", 0, 100, 2)

5.5.6 data_input_window_pwd

Original Function: int data_input_window_pwd(char *varname, char *caption,

double minvalue, double maxvalue, int dec_num, int passwd)

Function Description: Function for data input (password display option

available). When you call this function, the Data Input window will be

displayed. The data you enter in this window will be assigned as the

value for the parameter varname.

Return Value: 0 Failed

 1 Successful

Parameters: varname: Name of a variable. The data you enter in the Data Input

window will be assigned as the value for this parameter.

 caption: Prompt information to be displayed as the title of the Data

Input window.

 minvalue: Minimum value allowed for the data entered.

 maxvalue: Maximum value allowed for the data entered.

 dec_num: Number of decimals.

 passwd: 1: Password Display; 0: Normal Display.

Example: data_input_window_pwd("test.data", "test", 0, 100, 2, 1)

5.5.7 text_input_window

Original Function: int text_input_window(char *varname, char *caption, int

passwd)

Function Description: Function for text input. When you call this function, the

Text Input window will be displayed. The text you enter in this

window will be assigned as the value for the parameter varname.

Return Values: 0 Failed

 1 Successful

Parameters: varname: Name of a variable. The text you enter in the Text Input

window will be assigned as the value for this parameter.

 caption: Prompt information to be displayed as the title of the Text Input

window.

 passwd: 1: Password Display; 0: Normal Display.

Example: text_input_window("test.data", "test", 1)

5.5.8 msgbox

Original Function: int msgbox(char *caption, char *text, int type)

Function Description: Function for displaying a message box.

Return Values: MSG_IDOK: You can click on the OK button.

 MSG_IDCANCEL: You can click on the Cancel button.

 MSG_IDABORT: You can click on the Abort button.

 MSG_IDRETRY: You can click on the Retry button.

 MSG_IDIGNORE: You can click on the Ignore button.

 MSG_IDYES: You can click on the Yes button.

 MSG_IDNO: You can click on the No button.

Parameters: caption: Title of a window.

 text: Message content.

 type: Type of a message box, valued as follows:

 MSG_MB_OK: The OK button is displayed.

 MSG_MB_OKCANCEL: The OK and Cancel buttons are

displayed.

 MSG_MB_YESNO: The Yes and No buttons are displayed.

 MSG_MB_RETRYCANCEL: The Retry and Cancel buttons are

displayed.

 MSG_MB_ABORTRETRYIGNORE: The Abort, Retry and

Ignore buttons are displayed.

 MSG_MB_YESNOCANCEL: The Yes, No and Cancel buttons

are displayed.

 MSG_MB_ICONSTOP: The Stop icon is displayed.

 MSG_MB_ICONQUESTION: The Question icon is displayed.

 MSG_MB_ICONEXCLAMATION: The Exclamation icon is

displayed.

 MSG_MB_ICONINFORMATION: The Information icon is

displayed.

 MSG_MB_DEFBUTTON1: The first button is defined as default.

 MSG_MB_DEFBUTTON2: The second button is defined as

default.

 MSG_MB_DEFBUTTON3: The third button is defined as default.

Example: msgbox("Error", "Open file failed", MSG_MB_OK)

5.5.9 hmi_center_window

Original Function: int hmi_center_window(char *window_name)

Function Description: Function for displaying the window in the center.

Return Values: 0 Failed

 1 Successful

Parameter: window_name: Name of a window.

Example: hmi_center_window("test")

Chapter 6 Parameters

6.1 Overview

Parameter configuration provides the following two functions:

1) Modifying the default values of system variables, so as to change the system

behaviours;
2) Saving the user-defined data, the values of which are still stored in the system

even after you restart the system.
The following two sections describe these two functions in details.

6.1.1 Modifying System Variables

EASY defines some system variables to control the system operation. For example,

the system variable $system. HmidbDefCycleTime defines the cycle time for interface

refresh. Each system variable has a factory default value. You can modify the initial values

of these system variables to satisfy some special needs.

To modify the default value of a system variable, you need to add a parameter in

parameter configuration and associate it with the system variable. For details about

adding a parameter, please see section 6.2 Adding a Parameter.

6.1.2 Saving User-Defined Data

In actual operation, you might need to modify some data and have them saved in the

system permanently, so that they stay in the system even after you shut down or restart

the system; for example, some key configuration data. Different from system variables,

you can define these data in the real-time database.

For saving these user-defined data, EASY provides the following solution:

1. Add a parameter in parameter configuration, and associate this parameter with

the real-time data you want to save in the system permanently.

For details about adding a parameter, please see section 6.2 Adding a

Parameter.

Every time when a new parameter is added, the system will add an internal data

in the HMI database. These internal data are generated by the system

automatically, and are not reflected on the configuration interface. However, you

can view them in the HMI Database list on the right side of the Real-Time Data

Monitoring window during offline or online simulation, as shown in Figure 6.1.

Figure 6.1

At the system startup, the user-defined real-time data which are defined in

parameters will be copied to the corresponding HMI memory automatically.

The reason why the system automatically generates the data in the HMI memory is

mainly for the consideration of users' potential needs of “cancellation”. For example, if you

modify a parameter on the interface, the corresponding data in the real-time database will

be modified accordingly; however, the corresponding data in the HMI memory remains the

same as before your modification. If you feel like cancelling the modification, you can call

the rtdb_param_mem_to_rtdb function to copy the data from the HMI memory to the

real-time database.

2. To save a data after you modify it, you can call the sys_save_param function to

save the data to a device.

To prepare for potential future cancellation, you can call the

rtdb_param_rtdb_to_mem function to copy the modified data to the HMI

memory, so as to keep the data in the real-time database and that in the HMI

memory consistent, ready for the next time cancellation.

3. To cancel the data modification, you can call the rtdb_param_mem_to_rtdb

function to copy the data automatically generated in the HMI memory to the

real-time database.

6.2 Adding a Parameter

Each added parameter must be associated with a variable, either a system variable

defined internally in the system, or the user-defined data defined in the real-time

database. If a parameter is associated with a system variable, the parameter is added to

modify the default value of the system variable (see sction 6.1.1 Modifying System

Variables for details). If a parameter is associated with the user-defined real-time data,

the parameter is added to store the real-time data permanently in the system (see

section 6.1.2 Saving User-Defined Data for details).

To add a parameter, do as follows:

1) Select Parameter on the left side of the Project Manager window, and then

right-click in the list pane on the right side of the window, and you’ll see a right-click

menu as shown in Figure 6.2.

Figure 6.2

2) Select Add Data, and you’ll see a dialog box as shown in Figure 6.3.

Figure 6.3

The configuration parameters are described as follows:
 Database Name: Name of the database which stores the variable to which the

parameter is associated.
 Real-Time Data Name: Name of the variable to which the parameter is

associated.

 Initial Value: Initial value of the variable to which the parameter is associated.
The initial value is 0 if no specific initial value is configured here.
Note: If the initial value configured in the real-time database is different from the
initial value here, the system uses the initial value configured here.

6.3 Deleting a Parameter

To delete a parameter, do as follows:
1) Select Parameter on the left side of the Project Manager window, and then

right-click on the parameter you want to delete in the list pane on the right side of

the window.

You’ll see a right-click menu as shown in Figure 6.4.

Figure 6.4

2) Select Delete Data, and the selected parameter will be deleted.

6.4 Modifying a Parameter

To modify a parameter, do as follows:
1) Select Parameter on the left side of the Project Manager window, and then

right-click on the parameter which you want to modify in the list pane on the right

side of the window.

You’ll see a right-click menu as shown in Figure 6.5.

Figure 6.5

2) Select Modify to modify the parameter according to your needs.

6.5 System Functions for Parameter Configuration

6.5.1 rtdb_param_mem_to_rtdb

Original Function: int rtdb_param_mem_to_rtdb()

Function Description: To copy the data from the HMI memory to the real-time

database as the value of parameters.

Return Value: 0 Failed

 1 Successful

Parameter: None

Example: rtdb_param_mem_to_rtdb()

6.5.2 rtdb_param_rtdb_to_mem

Original Function: int rtdb_param_rtdb_to_mem()

Function Description: To copy the value of parameters from the real-time

database to the HMI memory.

Return Value: 0 Failed

 1 Successful

Parameter: None

Example: rtdb_param_rtdb_to_mem()

6.5.3 sys_save_param

Original Function: int sys_save_param()

Function Description: To save parameter data to devices.

Return Value: 0 Failed

 1 Successful

Parameter: None

Example: sys_save_param()

Chapter 7 C Language Programming

7.1 Overview

EASY supports powerful C language programming. Considering that all user-defined

scripts in the system are based on the C language, you can make full use of the powerful,

flexible and highly efficient C language programming to achieve complicated applications

most of which are possible only in the Industrial Personal Computer (IPC).

At present, EASY supports the C language programming in the following aspects:

 Direct C language programming in the scripts for dynamic properties and events

for graphic components

 Support of user-defined external C-language source files and library files

 Support of user-defined external expansion modules (which allows you to use

your own communication protocols) (see Chapter 14 Expansion Module

Programming for details)

7.2 Script Programming

During the configuration, you can configure dynamic property and event scripts for

graphic components. All of these scripts for dynamic properties and events are compiled

based on the C language.

In these scripts, you can:

 Use all the rules defined according to the C language syntax; for example, to

define static variables or array variables, or to use the ? expressions in the

scripts.

 Directly call the standard function library provided by the C language; for

example, to call the functions such as strcmp, sprintf, malloc, or fopen.

 Directly access the data defined in the real-time database and interface

database. For accessing the data in the real-time database, see section 3.5 Data

Referencing for details. For accessing the data in the interface database, see

section 4.4 Data Referencing for details.

 Call the internal system functions provided by the EASY system; for example,

the hmi_window_show function.

 Directly call the user-defined functions defined in external C-Language source

files and library files. For details, see section 7.3 External C Language Source

Files and Library Files.

Programming in the scripts in EASY is not much different from the usual C language

programming. Just pay attention to the usage of the following two aspects:

 Array Variables

 $$HmiCommit and $$HmiReload

7.2.1 Array Variables

EASY provides array variables, which are similar to the arrays in the C language. The

difference lies only in the data type: The C language supports defining arrays for various

types of data; for example, you can define int arrays (for example, int array[10]) or float

arrays (for example, float array[20]). However, the array variables in EASY are all uchar.

Therefore, while defining array variables in the real-time database, consider the data

length as the number of bytes.

The following figure shows an example of defining an array variable with the name as

array_test in the real-time database. The data length is 50, as shown in Figure 7.1.

Figure 7.1

You can consider this example as defining the array unsigned char array_test[50] in

the C language.

After defining array variables, you can operate on the array variables in the real-time

database as how you operate on the arrays of the C language. For example, you can

carray out the following operation (supposing that the database name is test):

$test.array_test[2] = 5;

memcpy($test.array_test, "\x10\x11\x12\x13\x14", 5);

((int)($test.array_test + 4)) = 0x1234;

Note: At present, the array variables can only be used in interface configuration

scripts and external C language applications.

7.2.2 $$HmiCommit and $$HmiReload

7.2.2.1 Processing the Script

EASY allows you to configure dynamic property and event scripts for graphic

components. The EASY system process these scripts as follows:

1. Before executing a user-compiled script, the system first scans the script for the

data referenced from the real-time database and the interface database (namely,

the variables starting with $), obtains the values of these data from the database

and save them to temporary variables, and then replaces all the referenced data

with the corresponding temporary variables.

2. The system executes the user-defined script.

3. The system determines whether the user-defined script changes the values of the

database variables. If yes, the system writes the new values into the database.

For example, the following is a user-defined script:

 $test.int_var1++;

 $test.float_var1 = 10.5;

The system processing of the script above can be translated into the following

pseudo code (get_data_from_database and set_data_to_database are pseudo

codes: get_data_from_database means to read data from the database, and

set_data_to_database means to write data into the database):

 int tmp_var1 = get_data_from_database("test.int_var1");

 int old_tmp_var1 = tmp_var1;

 float tmp_var2 = get_data_from_database("test.float_var1");

 float old_tmp_var2 = tmp_var2;

 tmp_var1++;

 tmp_var2 = 10.5;

 IF (tmp_var1 != old_tmp_var1)

 set_data_to_database("test.int_var1", tmp_var1);

 ENDIF

 IF (tmp_var2 != old_tmp_var2)

 set_data_to_database("test.float_var1", tmp_var2);

 ENDIF

The example above shows that the system accesses the database only at the

beginning (obtaining the values of the referenced variables) and the end (saving the

modified values into the database) of the script, but not the whole process of executing the

script. This, to some extent, ensures the system efficiency, saving the trouble of accessing

the database after executing each line of the script.

Generally speaking, this way of script processing ensures high system efficiency.

However, it also creates some problems; for example, the data values changed by the

execution of the script are not written into the database immediately, but only at the end of

the script.

For solving this kind of problems, EASY provides the $$HmiCommit and

$$HmiReload functions.

7.2.2.2 $$HmiReload

Call the $$HmiReload function to reaccess the database for the values of all the data

referenced in the script and then assign these values to the variables currently used in the

script (actually the temporary variables).

Take the following script for example:

 data_input_window("test.float_var1", "test", 0, 100, 2);

 if ($test.float_var1 > 50.0)

 {

 $test.int_var1 = 1;

 }

 else

 {

 $test.int_var1 = 0;

}

In which, data_input_window is a data input function provided by the EASY system.

After calling this function, you will see the Data Input window where you can enter data.

In this example, the data you enter will be assigned to the database variable

test.float_var1.

The system processing of the script above can be translated into the pseudo codes

as follows:

 int tmp_var1 = get_data_from_database("test.int_var1");

 int old_tmp_var1 = tmp_var1;

 float tmp_var2 = get_data_from_database("test.float_var1");

 float old_tmp_var2 = tmp_var2;

 data_input_window("test.float_var1", "test", 0, 100, 2); /* Note: This

function operates on the database by directly writing the value you enter to the

database variable test.float_var1 */

 if (tmp_var2 > 50.0) /*Here tmp_var2 is still used as the value of the

variable test.float_var1; however, the value of the database variable test.float_var1

has been modified by the data_input_window function. The value assignment here

is obviously wrong*/

 {

 tmp_var1 = 1;

 }

 else

 {

 tmp_var1 = 0;

}

 IF (tmp_var1 != old_tmp_var1)

 set_data_to_database("test.int_var1", tmp_var1);

 ENDIF

 IF (tmp_var2 != old_tmp_var2)

 set_data_to_database("test.float_var1", tmp_var2);

 ENDIF

In the pseudo codes above displayed in bold, the data_input_window function

writes the data entered directly to the database variable test.float_var1. However, the IF

condition followed immediately if (tmp_var2 > 50.0) doesn’t reaccess the database to

obtain the modified value of the variable test.float_var1, but instead uses tmp_var2

(value obtained from the database at the beginning of the script) as the value of the

variable. Obviously, the value assignment is wrong. In this case, you can call the

$$HmiReload function to reaccess the database forcibly.

The modified script is as follows:

 data_input_window("test.float_var1", "test", 0, 100, 2);

 $$HmiReload;

 if ($test.float_var1 > 50.0)

 {

 $test.int_var1 = 1;

 }

 else

 {

 $test.int_var1 = 0;

}

The system processing of the above modified script is translated into the following

pseudo codes:

 int tmp_var1 = get_data_from_database("test.int_var1");

 int old_tmp_var1 = tmp_var1;

 float tmp_var2 = get_data_from_database("test.float_var1");

 float old_tmp_var2 = tmp_var2;

 data_input_window("test.float_var1", "test", 0, 100, 2); /* Note: This

function operates on the database by directly writing the value you enter to the

database variable test.float_var1 */

 tmp_var1 = get_data_from_database("test.int_var1");

 tmp_var2 = get_data_from_database("test.float_var1");

 if (tmp_var2 > 50.0) /*Here tmp_var2 is the modified value of the database
variable test.float_var1 after the data_input_window function is called*/

 {

 tmp_var1 = 1;

 }

 else

 {

 tmp_var1 = 0;

}

 IF (tmp_var1 != old_tmp_var1)

 set_data_to_database("test.int_var1", tmp_var1);

 ENDIF

 IF (tmp_var2 != old_tmp_var2)

 set_data_to_database("test.float_var1", tmp_var2);

 ENDIF

In the pseudo codes above, the part in italic indicates that the $$HmiReload function

is called, which means that the system reaccesses the database to obtain the values of

the variables test.int_var1 and test.float_var1 and assign them accordingly to tmp_var1

and tmp_var2. In this way, tmp_var2 matches correctly to the modified value of the

variable test.float_var1, thus the further value assignment of the variable test.float_var1

would be correct.

7.2.2.3 $$HmiCommit

Call the $$HmiCommit function to write the current values of all the referenced data

in to the database.

Take the following script for example:

$test.float_var1 = 20.5;

user_func();

In which, user_func is a user-defined function. It can be defined as follows:

 void user_func()

 {

 ……

 if ((*(float *)hmidb_get_data_value("test.float_var1")) >= 20.0)

 {

 ……

 }

 ……

 }

In which, hmidb_get_data_value is a system function provided by EASY. This

function is for obtaining the data value from the database. The system processing of the

script above can be translated in the following pseudo codes:

 float tmp_var1 = get_data_from_database("test.float_var1");

 float old_tmp_var1 = tmp_var1;

tmp_var1 = 20.5;

user_func();

 IF (tmp_var1 != old_tmp_var1)

 set_data_to_database("test.float_var1", tmp_var1);

 ENDIF

Let’s take a look at the bold codes in the pseudo codes above. The script is supposed

to first set the value of the variable test.float_var1 to 20.5, and then call the function

user_func, and further the function hmidb_get_data_value to obtain the current value

(which should be 20.5) of the variable test.float_var1, and then process it accordingly

based on the value obtained.

But from the pseudo codes above, we can see that $test.float_var1 = 20.5; is

replaced by tmp_var1 = 20.5; in the script. During the system processing, the value of

tmp_var1 is modified; however, the modified value is not written into the database

immediately (as stated ealier, the modified value is written into the database only at the

end of the script). Therefore, the value of test.float_var1 in the database is still the value

before the modification. The value of test.float_var1 obtained by the function

hmidb_get_data_value of the function user_func is also the value before the

monidication, but not the user-defined value 20.5.

To address this issue, you can call the function $$HmiCommit to force the system to

write the data into the database immediately.

The modified script is as follows:

$test.float_var1 = 20.5;

$$HmiCommit;

user_func();

The system processing of the modified script can be translated into the following

pseudo codes:

 float tmp_var1 = get_data_from_database("test.float_var1");

 float old_tmp_var1 = tmp_var1;

tmp_var1 = 20.5;

 set_data_from_database("test.float_var1", tmp_var1);user_func();

 IF (tmp_var1 != old_tmp_var1)

 set_data_to_database("test.float_var1", tmp_var1);

 ENDIF

The italic codes above is the result of calling the function $$HmiCommit. It forces the

system to immediately write the value of tmp_var1 into the database data

test.float_var1. In this case, when the function user_func accesses the database for

the value of test.float_var1, it obtains the latest value.

7.3 External C Language Source Files and Library Files

7.3.1 Overview

You can define one or more complicated algorithms or common functions into one or

more external C source or library files. You just simply assign these external C source or

library files during the compiling, and EASY can integrate these files into the system, so

that they can be called directy by the dynamic property and event scripts of graphic

components during interface configuration.

To assign the external C source or library files during the compiling, do as follows:

In the Project Manager window, select Tools and then Compile a Project, or simply

click on the compiling button in the tool bar, and you will see the Compile a
Project dialog box as shown in Figure 7.2.

Figure 7.2

If no external C source or library files are used in the project, then you do not need to

configure any of the configuration items in Compiling Options. If they are used, then

you need to configure one of more of the configuration items, which are described as

follows:
 Additional Definition: Equal to the compiling options in the C language; for

example, -D_DEBUG –D_MYDEF –Ic:\myinclude.
 Additional Header File: To define the header file to be used in the project. Only

one header file can be added.
 Additoinal Source files and libraries (Windows): To define the external C

source or library files to be added for running on the Windows platform (for both
offline and online simulation). Multiple files can be added at the same time.

 Additoinal Source files and libraries (HMI): To define the external C source or
library files to be added for running on the HMI. Multiple files can be aded at the
same time.

7.3.2 Examples

This section uses an example to explain how to use external C source or library files

during the EASY configuration.

This example shows the following function: to implement the BubbleSort (BS)

algorithm in the external C source file, and then call this algorithm during the HMI

configuration to sort the data in the real-time database.

1. Create a C source file sort.c, and implement the BS algorithm on the long and

char data arrays. The contents of the source file go as follows:

void bubble_sort(long array[], int length)

{

 unsigned char exchange; /* To record whether the element exchange occurs in the first

round traversal */

 long temp;

 int i, j;

 for (i = 1; i < length; i++)

 {

 exchange = 0 ;

 for (j = length-1; j >= i; j--)

 {

 if (array[j] < array[j-1])

 {

 exchange = 1;

 temp = array[j];

 array[j] = array[j-1];

 array[j-1] = temp;

 }

 }

 /* The sorting ends if no element exchange in this round of traversal. */

 if (0 == exchange)

 break ;

 }

}

2. Add an external C header file sort.h, which contents go as follows:

#ifndef _SORT_H_

#define _SORT_H_

extern void bubble_sort(long array[], int length);

#endif

3. In the Project Manager window, add a new database test under the Real-Time

Database node, and then add 5 long data, data1 to data5, with the initial values

as 70, 20, 40, 11, and 15 individually. After you add all the 5 data, you will see a

window as shown in Figure 7.3.

Figure 7.3

4. In the Project Manager window, add an interface test, as shown in Figure 7.4.

Figure 7.4

5. In the test interface, add a button graphic component, and then compile the

following script for the Press event for this button:

long array[5];

array[0] = $test.data1;

array[1] = $test.data2;

array[2] = $test.data3;

array[3] = $test.data4;

array[4] = $test.data5;

bubble_sort(array, 5);

$test.data1 = array[0];

$test.data2 = array[1];

$test.data3 = array[2];

$test.data4 = array[3];

$test.data5 = array[4];

6. In the Project Manager window, select Tools and then Compile a Project, or

click on the compiling button in the tool bar, and you’ll see a dialog box as
shown in Figure 7.5.

You need to configure the four configuration items accordingly. (Suppose that the

sort.c and sort.h files are kept in the C:\ directory).

Figure 7.5

Click on the Start Compiling button.

7. Select Tools and Offline Simulation to show the configuration interface. Select

Window and then Real-Time Display to display the real-time data monitoring

window, as shown in Figure 7.6.

In this window, you can see the values of data1 to data5 are 70, 20, 40, 11, 15

accordingly:

Figure 7.6

Click on the button in the window, and you can see that the values of data1 to data5

change to 11, 15, 20, 40, and 70 accordingly, as shown in Figure 7.7. The data values

are sorted in sequence.

Figure 7.7

7.4 Script Compiling

After configuration, the project needs to be compiled before it can run. If the compiling

is successful, the following information will be displayed in the Compile a Project dialog

box, as shown in Figure 7.8:

LCGen Version:1.7.0,Copyright EASY Inc(2004-2008).

Use of deprecated SAXv1 function ignorableWhitespace

Figure 7.8

If the above information is not displayed, it means the compiling fails; in this case, you

need to find out what causes the failure.

Let’s take an example here to explain how to analyze what causes the compiling

failure based on the error information.

Suppose that you add a button button1 in the test interface and that the following

script is configured for the Press event for this button:

 $test.data1 = 1

The problem of this script is that the statement doesn’t end with the semi-colon ;,

which is required by the syntax of the C language. This script will cause the following

error prompt during the project compiling:

LCGen Version:1.7.0,Copyright EASY Inc(2004-2008).

Use of deprecated SAXv1 function ignorableWhitespace

C:\Documents and Settings\JiangJian\Desktop\test_c\compile\event_funcs.c: In function

`widget_test_button1_click':

C:\Documents and Settings\JiangJian\Desktop\test_c\compile\event_funcs.c:26: error: syntax

error before '}' token

C:\Documents and Settings\JiangJian\Desktop\test_c\compile\event_funcs.c: In function

`widget_test_button1_click':

C:\Documents and Settings\JiangJian\Desktop\test_c\compile\event_funcs.c:26: error: syntax error

before '}' token

The above error prompt indicates which script causes the compiling failure. The string

in bold widget_test_button1_click is divided into four groups by the underscore, which

are explained as follows:

• widget: Fixed prefix.

• test: Name of an interface.

• button1: Name of a graphic control component.

• click: Dynamic property or event of the graphic control component.

It refers to the Press event here.

The above error prompt indicates that some error occurs during the compiling of

script for the Press event of the button1 button in the test interface.

7.5 Script Commissioning

7.5.1 Overview

During the program development, you might get some script-related issues; for

example, the script fails to run or the script execution turns out different from what you

expected. In this case, you might want to print out some important information for

analyzing what causes the script execution error.

Considering this, EASY provides the Commissioning Output Background tool. You

can add the printing commissioning information anywhere in the script, and these

information will be exported to the commissioning window of the Commissioning

Output Background tool.

The following of this section describes in details how to use this tool.

1. Start the Commissioning Output Background tool, as follows:

After EASY is installed, click on Start > EASY Industrial Control Software >

Commissioning Output Background, as shown in Figure 7.9.

Figure 7.9

And then you’ll see the EASY Printing Commissioning Wnidow, as shown in Figure

7.10.

Figure 7.10

The printing commissioning information will be exported and displayed in this window.

2. Set the IP address of the commissioning host (namely, the computer on which the

Commissioning Output Background tool is running.)

You can call the function debug_printf to export the commissioning information. But

before that, you must call the function debug_set_ip to set the IP address of the

commissioning host on which the Commissioning Output Background tool is running.

You can call the function debug_set_ip any time, just on one condition that it’s called

before the function debug_printf. In addition, the function debug_set_ip can be called

more than one time, and each calling will overwrite the IP address set by the previous

calling. For details about the function debug_set_ip, see section 7.5.2 System Functions

for Script Commissioning.

3. Call the function debug_printf to export the commissioning information

whenever necessary.

For details about the function debug_printf, see section 7.5.2 System Functions for

Script Commissioning.

7.5.2 System Functions for Script Commissioning

7.5.2.1 debug_set_ip

Original Function: void debug_set_ip(const char *ip)

Function Description: To set the IP address of the host on which the

Commissioning Output Background tool is running.

Return Value: None.

Parameter: ip: IP address of the host on which the Commissioning Output

Background tool is running.

Example: debug_set_ip("127.0.0.1");

7.5.2.2 debug_printf

Original Function: void debug_printf(const char *format, …)

Function Description: To export the printing commissioning information to the

commissioning host. Use this function in the same way as the library

function printf in the standard C language.

Return Value: None.

Parameter: format: String for format control. Same as for the library function printf

in the standard C language.

 …: Optional parameter. Same as for the library function printf in the

standard C language.

Example: debug_printf("i=%d\n", i);

Chapter 8 Real-Time Trend Curves

8.1 Overview

In the real-time operation, you might often need to observe how the data changes

within a period of time. A very simple and straightforward way is to draw real-time trend

curves for these data. The change in the curve shows vividly the data change trend.

Because of this, the real-time trend curve is a very important part in the industrial control

system.

EASY provides powerful real-time trend curve functions. It not only provides you an

easy way to draw real-time trend curves, but also allows you to save the data for future

data analysis according to your needs.

EASY offers the following two solutions for implementing the real-time trend curve

functions:

1. Function interface provided by the system

EASY provides a set of function interfaces. You can select the programming

that best suits your needs to realize real-time trend curves.

These are the advanced functions, highly flexible and suitable for some

special situations, and thus are not introduced in details here.

2. System default method

The system default method for realizing real-time trend curves is simple and

easy to use. You just need to do some simple settings during the configuration;

almost no programming involved at all.

The following of this chapter describes this method in details.

If you select the system default method for realizing real-time trend curves, please

follow the procedure below:

1. Create real-time data records for the data you want to draw real-time trend

curves.

2. During the interface configuration, use the Real-Time Trend Curve control to

display the real-time trend curves of the selected data.

3. (Optional step) Save the real-time data records if necessary, and use the

Real-Time Trend Curve control to view the real-time trend curves of the selected

data.

The following sections will describe these three steps in details.

8.2 Definition of Real-Time Data Records

You can define one or more real-time data records, and each can contain one or more

data for which real-time trend curves needs to be drawn. All the data in one real-time data

record share some common properties; for example, they will all be collected with the

same time cycle.

You can also define a data into different real-time data records. In this case, this data

has various different properties. For example, a data needs to be collected 100 times

every 1 second on one real-time trend curve, but needs to be collected 200 times every 5

seconds on another real-time trend curve. In this case, you will need to define this data

into two separate data records.

During the interface configuration, each Real-Time Trend Curve control associates

one real-time data record only. However, this Real-Time Trend Curve control can display

all the data defined in the real-time data record to which this control associates.

8.2.1 Creating a Data Record

To create a data record, do as follows:

1) Select the Real-Time Data Record node on the left side of the Project Manager

window, and right-click on it.

And you will see a right-click menu as shown in Figure 8.1.

Figure 8.1

2) Select Create a Data Record, and you will see a dialog box as shown in Figure

8.2.

Figure 8.2

The parameters in Figure 8.2 are described as follows:
 Record Name: Name of a real-time data record.
 Default Record Cycle: Default time cycle for collecting data (unit: ms), which

defines the time cycle for the system to collect data for all the data defined in a
real-time data record.

 Cycle Variable: You can associate a time cycle for data collection to a real-time
database variable. In this case, the time cycle can change dynamically during the
system operation. If no cycle variable is defined, the value set for Default
Record Cycle will be used as the collection cycle; otherwise, the value set for
Cycle Variable will be used as the collection cycle, which turns the value set for
Default Record Cycle invalid.

 Control Variable: controls how a data record operates. It is valued as below:
 0: means to start collecting data for all the data defined in the
real-time data record.
 1: means to stop collecting data for all the data defined in the
real-time data record.
 2: means to empty the data collected for all the data defined in the
real-time data record.

 Data Collection Volume: defines how many times the data is to be collected for
all the data defined in the data record. For example, if you set Default Record
Cycle to 1000 and Data Collection Volume to 100, that means data will be
collected for all the data defined in the data record every 1000 ms and 100 data
will be collected the most. If more than 100 data are collected, the later collected
data will overwrite the previously collected data. For example, if the 101st data is
collected, the 1st collected data will be replaced.

8.2.2 Adding Data

After you create a data record, you will need to add data into this data record. To add

data, do as follows:

1) Select a real-time data record on the left side of the Project Manager window,

and right-click in the list pane on the right side of the window.

And you will see a right-click menu as shown in Figure 8.3.

Figure 8.3

2) Select Add Data, and you will see a dialog box as shown in Figure 8.4.

Figure 8.4

3) Select data from the real-time database to add into this data record.

8.2.3 Deleting Data

To delete a data defined in a real-time data record, do as follows:

1) Select a real-time data record on the left side of the Project Manager window,

and right-click on the data you want to delete in the list pane on the right side.

And you will see a right-click menu as shwon in Figure 8.5.

Figure 8.5

2) Select Delete Data.

The selected data will be deleted from the data record.

8.2.4 Modifying Data

To modify a data defined in a real-time data record, do as follows:

1) Select a real-time data record on the left side of the Project Manager window,

and right-click on a data you want to modify in the list pane on the right side of the

window.

And you will see a right-click menu as shown in Figure 8.6.

Figure 8.6

2) Select Modify.

And you can modify the data according to your needs.

8.2.5 Creating a Whole Database Record

A Real-Time Whole Database Record allows you to add all data defined in the

real-time database into a data record, which saves the trouble of adding the data for

drawing real-time trend curves one by one.

To create a whole database record, do as follows:

1) Select the Real-Time Data Record node on the left side of the Project Manager

window and right-click on it.

And you will see a right-click menu as shown in Figure 8.7.

Figure 8.7

2) Select Create a Whole Database Record, and you will see a dialog box as

shown in Figure 8.8.

Figure 8.8

The parameters in Figure 8.8 are described as follows:
 Record Name: Name of a real-time data record.
 Default Record Cycle: Default time cycle for collecting data (unit: ms), which

defines the time cycle for the system to collect data for all the data defined in a
real-time data record.

 Cycle Variable: You can associate a time cycle for data collection to a real-time
database variable. In this case, the time cycle can change dynamically during the
system operation. If you set Cycle Variable, the value set for Default Record
Cycle will become invalid.

 Control Variable: controls how a data record operates. It is valued as below:
 0: means to start collecting data for all the data defined in the
real-time data record.
 1: means to stop collecting data for all the data defined in the
real-time data record.
 2: means to empty the data collected for all the data defined in the
real-time data record.

 Data Collection Volume: defines how many times the data is to be collected for
all the data defined in the data record. For example, if you set Default Record
Cycle to 1000 and Data Collection Volume to 100, that means data will be
collected for all the data defined in the data record every 1000 ms and 100 data
will be collected the most. If more than 100 data are collected, the later collected
data will overwrite the previously collected data. For example, if the 101st data is
collected, the 1st collected data will be replaced.

 Real-Time Database Name: Name of the real-time database from where all the
data will be selected and added to this whole database record.

8.2.6 Deleting a Data Record

To delete a data record, do as follows:

1) Select a data record on the left side of the Project Manager window, and

right-click on it.

And you will see a right-click menu as shwon in Figure 8.9.

Figure 8.9

2) Select Delete a Data Record.

And the selected data record will be deleted.

8.2.7 Modifying a Data Record

To modify a data record, do as follows:

1) Select a data record you want to modify on the left side of the Project Manager

window, and right-click on it.

And you will see a right-click menu as shwon in Figure 8.10.

Figure 8.10

2) Select Modify.

And you can modify the data according to your needs.

8.3 Control - Real-Time Trend Curves

8.3.1 Overview

In the Interface Editor window, click on the Real-Time Trend button in the

tool set on the left side, and move the cursor to the editting area on the right side, and you

can see the cursor become a cross. Drag the mouse in the editting area to draw a

rectangle, and real-time trend curves will be displayed in this rectangle, as shown in

Figure 8.11.

Figure 8.11

In the middle of the Real-Time Trend Curve control is a drawing area with gridlines.

The real-time trend curves will be displayed within this area. On the left side of the

gridlines is the X-axis (for time), and at the bottom is the Y-axis (for value). You can select

a real-time trend curve object (8 small rectangles will appear on the sides of the object

once selected) to move the object or change the size of the object.

The gridlines are composed of two parts: the ones vertical to the X-axis and the ones

vertical to the Y-axis. You can set the numbers of gridlines for each direction. For example,

if you set the number of vertical gridlines to 5, then the whole curve area will be divided

into 6 identical areas.

8.3.2 Properties of Real-Time Trend Curves

Select a real-time trend curve with a left click, and you will see the Property List

pane displayed on the right side of the editting area, listing all the properties of the

selected real-time trend curve.

Real-time trend curves have the following five property nodes, as shown in Figure

8.12:

• Basic Properties

• Events

• Real-Time Trend Basic Properties

• Real-Time Trend Curve Properties

• Real-Time Trend Indicator Line Properties

Figure 8.12

For details about basic properties, see section 5.3.3 Basic Properties. For details

about events properties, see secton 5.3.5 Events.

8.3.2.1 Basic Properties

A Real-Time Trend Curve control can display curves for multiple data. This section

describes the basic properties of all the curves.
Property Description Remarks on Dynamic Properties

Minimum Value Value of the startpoint on the Y-axis.

Maximum Value Value of the endpoint on the Y-axis.

The return value is numeric.

Changing these two values will zoom

or move the curve vertically.

Maximum Horizontal Points Maximum data points in the horizontal direction. No dynamic properties.

Horizontal Points Data points distributed in the horizontal direction. The return value is an integer.

This property and the property

Maximum Horizontal Points

together zoom the curves

horizontally.

Number of Vertical Lines Number of the gridlines vertical to the Y-axis. The return value is an integer.

Number of Horizontal Lines Number of the gridlines vertical to the X-axis. The return value is an integer.

Horizontal Spacing Spacing between the curve drawing area and the left

or right margin of the curve control.

The return value is an integer.

Vertical Spacing Spacing between the curve drawing area and the top The return value is an integer.

Property Description Remarks on Dynamic Properties

or bottom margin of the curve control.

Background Color Background color of the curve control.

Background Color of

Curves

Background color of the curve drawing area of the

curve control.

Color of Vertical Lines Color of the gridlines vertical to the Y-axis.

Color of Horizontal Lines Color of the gridlines vertical to the X-axis.

Color of Text Color of the text beside the X-axis and the Y-axis.

The return value of the expression or

dynamic script is the RGB value of

the defined color.

Number of Curves Defines the number of curves to be displayed (16 the

most).

No dynamic properties.

Data Source Source of the data for drawing the trend curve:

1) Real-Time Record in Memory: The data

selected for drawing the trend curve come from

the current values of the data in the real-time data

record.

2) File: You can save real-time data records to files.

If you set the data source to Files, then the saved

trend curves will be displayed.

No dynamic properties.

Trend Name Valid when Data Source is set to Real-Time Records

in Memory.

The trend name indicates the name of the real-time

data record. It must be defined in the real-time data

record in Project Manager.

No dynamic properties.

File Storage Location Valid when Data Source is set to File.

This property indicates the location whereh the record

file is stored, either the internal flash or the CF card.

The return value is 0 or 1:

• 0: Internal flash

• 1: CF card

File Name Valid when Data Source is set to File.

This property indicates the name of the record file.

The return value is a string which

contains the name of the record file.

Start Point Valid when Data Source is set to File.

This property indicates from which data point of the

record the curve starts to display.

The return value is int.

Changing the value of this property

will move the curve horizontally.

8.3.2.2 Properties of Curves

This section describes the data to which each curve is associated and the color of the

curve. In total, 16 curves can be configured the most.
Property Description Remarks on Dynamic Properties

Variable Name Defines the name of the variable to which the curve is

associated.

This variable must be defined in the real-time data

record.

If no variable is defined here, then the corresponding

The return value is a string, which is the name

of the variable data to which the curve is

associated.

If a blank string (“”) is returned, it means the

curve will not be displayed.

curve will not be displayed.

Curve Color Defines the color of the curve. The return value of the expression or the

dynamic script is the RGB value of the defined

color.

8.3.2.3 Properties of Indicator Lines

Property Description Remarks on Dynamic Properties

Allow Indicator

Line

Defines whether the control provides indicator lines. The return value is bit, as follows:

• 0: Not allow

• None 0: Allow

Indicator Line

Color

Defines the color of the indicator line. The return value of the expression or the

dynamic script is the RGB value of the

defined color.

Time Variable The time data where the indicator line points to is

saved to this variable.

The return value is a string, which is the

name of the time variable.

Data Value

Variable

The data value of the curve where the indicator line

points to is saved to this variable.

The return value is a string, which is the

name of the data value variable.

8.4 Saving Real-Time Data Records

EASY allows you to save the data defined in real-time data records and to view the

curves using the Real-Time Trend Curve control. You can call the function

rtdb_log_save_file to save real-time data records. For details, please see section 8.5

System Functions for Real-Time Trend Curves.

You can also view the curves for the saved data using the Real-Time Trend Curve

control. (You must set Data Source to File. For details, see section 8.3.2.1 Basic

Properties.) Alternatively, you can call the function rtdb_get_log_data_from_file. For

details about this function, see section 8.5 System Functions for Real-Time Trend Curves.

8.5 System Functions for Real-Time Trend Curves

8.5.1 rtdb_log_save_file

Original Function: int rtdb_log_save_file(char *logname, int save_dir, char
*filename)

Function Description: To save a real-time data record into a file.

Return Value: 0 Failed

 1 Successful

Parameters: logname: Name of a real-time data record.

 save_dir: 0: HMI internal flash; 1: CF card.

 filename: Name of the file for saving the real-time data record.

Example: rtdb_log_save_file("real", 0, "recfile.log")

8.5.2 rtdb_get_log_data

Original Function: int rtdb_get_log_data(char *logname, char *dataname, u8
*buf, int log_number)

Function Description: To obtain data from the current real-time data record.

Return Value: 0: Failed

 Other values: Actual volume of data collected.

Parameters: logname: Name of a real-time data record.

 dataname: Name of the data variable for which data is to be collected.

 buf: Buffer for the collected data. You need to assign space for the

butter in advance.

 log_number: Volume of data to be collected.

Example: rtdb_get_log_data("real", "test.data1", buf, 100)

8.5.3 rtdb_get_log_data_from_file

Original Function: int rtdb_get_log_data_from_file(int file_path, char
*filename, char *dataname, u8 *buf, int log_number, int start_pt)

Function Description: To obtain data from the saved real-time record file.

Return Value: 0: Failed

 Other values: Actual volume of data collected.

Parameters: file_path: 0: HMI internal flash; 1: CF card.

 filename: Name of the file where the real-time data record is saved.

 dataname: Name of the data variable for which data is to be collected.

 buf: Buffer for the collected data. You need to assign space for the

butter in advance.
 log_number: Volume of data to be collected.

 start_pt: Start point from where data is collected.

Example: rtdb_get_log_data_from_file(0, " recfile.log ", "test.data1", buf, 100, 0)

Chapter 9 Historical Data Processing

9.1 Overview

The data saving function is of vital importantance to any industrial system. As the

industrial automation becomes more and more popular and advanced, the demands and

requirements for saving and accessing important data of industrial sites become more and

more complicated as well. The traditional HMIs disclose more and more disadvantages,

for example:

• Inability of saving large quantities of data

• Slow saving speed

• High risks of data loss

• Short saving period

• Huge space occupation for the saved data

• Slow access speed

Therefore, for large-scale systems with high requirements, the issue of saving and

accessing historical data becomes more and more crucial.

Considering this development tendency, EASY HMI comes out with the idea of

high-speed historical database, which supports as high-speed as millisecond saving and

inquiring of historical data. EASY adopts the most advanced data compression and

search technologies, which achieves the compression ratio of the database lower than

20%, greatly saving the disk space. In addition, the data inquiry speed is considerably

increased, allowing you to query the data at any time. Besides, you can download the data

at any time to an external device, such as a thumb drive or external hard drive, which

solves the issue of data loss.

In the EASY system, all the data variables that can be defined in the real-time

database, such as the discrete, int, real type, and string variables, support historical data

saving. EASY supports the following three modes of historical data saving:

• Timed Saving (minimum unit: 1ms)

• Saving at Data Change

• Variable-Triggered Saving

9.2 Historical Data Records

9.2.1 Overview

Before saving the collected data into the database, you need to create historical data

records first. You can define one or more historical data records, and each can contain

one or more data to be saved.

While adding the data to be saved into a historical data record, besides defining the

name of the data, you also need to define the data saving mode: timed saving, data

change saving, or variable-triggered saving. When the defined saving condition of the

defined saving mode is satisfied, the system will save the data automatically.

All the data in a historical data record share some common properties; for example,

they will be collected at the same time cycle. You can also define a data into different

historical data records. In this case, this data will have various different properties. For

example, you want to collect a data 100 times at the interval of 1s for one real-time trend

curve; while for the same data, you want to collect it 200 times at the interval of 5s for

another. In this case, you can define this data into two individual data records.

During the interface configuration, each Historical Trend Curve or Historical Data

List control associates one historical data record only. However, this Historical Trend

Curve or Historical Data List control can display all the data defined in the historical data

record to which the control associates.

9.2.2 Creating a Historical Data Record

To create a historical data record, do as follows:
1) Select the Historical Data Record node on the left side of the Project Manager

window.
2) Right-click on it and select Add a Historical Data Record.

And you will see the dialog box as shown in Figure 9.1.

Figure 9.1

The parameters in Figure 9.1 are described as follows:
 Historical Record Name: Name of a historical data record.
 Minimum Time Cycle: Minimum time cycle for processing and saving the data

defined in a historical data record.
The system checks periodically (depending on the minimum time cycle defined
here) whether the conditions set for saving the individual data defined in a
historical data record are satisfied. If satisfied, the system will save the data into
the historical database.
In other words, this parameter actually defines the finest level of granularity for
processing a historical data record. For example, suppose you set this parameter
to 1s and set the mode for saving a data in a historical data record to
Variable-Triggered. If the related variable jumps multiple times within 1s, then
the system records only the value of the last jump, while the previous jumps will
not be captured.

 File Saving Location: defines where to save the file of a historical data record.
You can choose to save the file into the internal flash or the C Fcard.

 Data Saving Days: defines the maximum days of saving the historical data in
the historical database.
When the defined number of days expires, the system will automatically delete
the historical data collected.

 Index interval: defines the interval for creating index for the saved historical data.
Creating index will speed up the search of the historical data. However, it will
increase the space occupied.

9.2.3 Adding Data

After you create a historical data record, you need to add data into this record.

To add data into a record, do as follows:

1) Select a historical data record on the left side of the Project Manager window,

and then right-click in the list pane on the right side of the window, as shown in

Figure 9.2.

Figure 9.2

2) Select Add Data, and you will see a dialog box as shown in Figure 9.3.

Figure 9.3

The parameters in Figure 9.3 are described as follows:
 Database Name: Name of the database from where you select the data for

adding into the record.
 Real-Time Data Name: Name of the variable corresponding to the data to be

saved.
 Inquiry Variable Name: While you query a saved historical data, the queried

data value will be saved to this variable. For details, see section 9.5 Historical
Data Inquiry. If no inquiry variable is defined, it means there is no need to query
this data.

 Saving Mode: defines the condition for saving a specific data.
The system supports the following three saving modes:

 Timed Saving: The system saves the data value into the historical database
at a specified interval, no matter whether the data value changes.

 Saving at Data Change: The values of variables keep changing during the
system operation. The system saves the changed value of a variable only
when the difference between the current value and the previous value is
greater than the defined data change value.
For example, you want to save the value of a real type variable, and you set

the data change value to 1. Suppose that the first value of this real type
variable is saved as 10 in the system.
When the value of this variable changes to 10.9, this value will not be saved
because 10.9-10=0.9<1 (namely, the difference between the current value
and the previous value is less than the defined data change value). When
the value changes to 12, the changed value 12 will be saved to the historical
record because 12-10.9=1.1>1 (namely, the difference is greater than the
defined data change value).

 Variable-Triggered Saving: When the value of the defined trigger variable
becomes 1, the system starts saving the data. After the data is saved, the
system automatically resets the value of the trigger variable to 0.

 Timed Saving Interval: When you set Saving Mode to Timed Saving, this
parameter defines the interval for saving the selected data.

 Data Change Value: When you set Saving Mode to Saving at Data Change,
this parameter defines the value of the data change.

 Trigger Variable: When you set Saving Mode to Variable-Triggered Saving,
this parameter specifies the trigger variable.

 Description: This parameter can have following two types of values:
 Descriptive text for the data;
 Name of the relative field to be displayed in the Historical Data List control.

9.2.4 Deleting Data

To delete a data defined in a historical data record, do as follows:

1) Select the name of the historical data record on the left side of the Project

Manager window, and right-click on the data you want to delete in the list pane on

the right side.

And you will see a right-click menu as shown in Figure 9.4.

Figure 9.4

2) Select Delete Data.

And the selected data will be deleted.

9.2.5 Modifying Data

To modify a data defined in a historical data record, do as follows:

1) Select the name of the historical data record on the left side of the Project

Manager window, and right-click on the data you want to modify in the list pane

on the right side.

And you will see a right-click menu as shown in Figure 9.5.

Figure 9.5

2) Select Modify.

And you can modify the data according to your needs.

9.2.6 Deleting a Historical Data Record

To delete a historical data record, do as follows:

1) Select the name of the historical data record on the left side of the Project

Manager window, and right-click on it.

And you will see a right-click menu as shown in Figure 9.6.

Figure 9.6

2) Select Delete a Historical Data Record.

And the selected historical data record will be deleted.

9.2.7 Modifying a Historical Data Record

To modify a historical data record, do as follows:

1) Select the name of the historical data record on the left side of the Project

Manager window, and right-click on it.

And you will see a right-click menu as shown in Figure 9.7.

Figure 9.7

2) Select Modify.

And you can modify the historical data record according to your needs.

9.3 Control - Historical Trend Curves

9.3.1 Overview

In the Interface Editor window, click on the Historical Trend button in the tool

set on the left side and move the cursor to the editting area on the right side, you will see

the cursor becomes a cross. Drag the cursor to draw a rectangle, and the historical trend

curves will be displayed in this rectangle, as shown in Figure 9.8.

Figure 9.8

In the middle of the Historical Trend Curve control is a drawing area with gridlines.

The historical curves will be displayed within this area. On the left side of the gridlines is

the X-axis (for time), and at the bottom is the Y-axis (for value). You can select a historical

trend curve object (8 small rectangles will appear on the sides of the object once selected)

to move the object or change the size of the object.

The gridlines are composed of two parts: the ones vertical to the X-axis and the ones

vertical to the Y-axis. You can set the numbers of gridlines for each direction. For example,

if you set the number of vertical gridlines to 5, then the whole curve area will be divided

into 6 identical areas.

9.3.2 Properties of Historical Trend Curves

After historical trend curves are drawn, select any of the curves with a left click, and

you will see the Property List pane displayed on the right side of the editing area, listing

all the properties of the selected historical curve.

Historical curves have the following five property nodes, as shown in Figure 9.9:

• Basic Properties

• Events

• Historical Trend Basic Properties

• Historical Trend Curve Properties

• Historical Trend Indicator Line Properties

Figure 9.9

For details about basic properties, see section 5.3.3 Basic Properties. For details

about events properties, see secton 5.3.5 Events.

9.3.2.1 Basic Properties

A Historical Trend Curve control can display curves for multiple data. This section

describes the basic properties of all the curves.
Property Description Remarks on Dynamic

Properties

Minimum Value Value of the startpoint on the Y-axis.

Maximum Value Value of the endpoint on the Y-axis.

The return value is

numeric.

Changing these two values

will zoom or move the curve

vertically.

Horizontal Points Data points distributed in the horizontal direction. No dynamic properties.

Number of Vertical Lines Number of the gridlines vertical to the Y-axis. The return value is an

integer.

Number of Horizontal Lines Number of the gridlines vertical to the X-axis. The return value is an

integer.

Horizontal Spacing Spacing between the curve drawing area and the left or

right margin of the curve control.

The return value is an

integer.

Vertical Spacing Spacing between the curve drawing area and the top or

bottom margin of the curve control.

The return value is an

integer.

Background Color Background color of the curve control.

Background Color of Curves Background color of the curve drawing area of the curve

control.

Color of Vertical Lines Color of the gridlines vertical to the Y-axis.

Color of Horizontal Lines Color of the gridlines vertical to the X-axis.

Color of Text Color of the text beside the X-axis and the Y-axis.

The return value of the

expression or dynamic

script is the RGB value of

the defined color.

Start Time: (year, month,

date, hour, minute, second)

The return value is an

integer.

End Time: (year, month,

date, hour, minute, second)

Defines the range of data displayed by the historical

trend curves.

The return value is an

integer.

Historical Record Name Indicates the name of the historical data record for

which the curves are drawn.

These curves are displayed for all the data defined in

the historical data record.

This name is defined when you create the historical data

record in the Project Manager window.

No dynamic properties.

Redrawing Variable Name of the redrawing variable of the Historical Trend

Curve control.

The value of this variable is bit. When the value of this

variable is 1, the system starts redrawing all the curves

covered in the control. After the redrawing is complete,

the system automatically resets the value of this variable

to 0.

The return value is a string,

which is the name of the

redrawing variable.

Number of Curves Defines the number of curves to be displayed (16 the

most).

No dynamic properties.

9.3.2.2 Properties of Curves

This section describes the data to which each curve is associated and the color of the

curve. In total, 16 curves can be configured the most.
Property Description Remarks on Dynamic Properties

Variable Name Defines the name of the variable to which the curve is

associated.

This variable must be defined in the historical data record.

If no variable is defined here, then the corresponding

curve will not be displayed.

The return value is a string, which is

the name of the variable data to which

the curve is associated.

If a blank string (“”) is returned, it

means the curve will not be displayed.

Curve Color Defines the color of the curve. The return value of the expression or

the dynamic script is the RGB value of

Property Description Remarks on Dynamic Properties

the defined color.

9.3.2.3 Properties of Indicator Lines

Property Description Remarks on Dynamic Properties

Allow Indicator

Line

Defines whether the control provides indicator line. The return value is bit, as follows:

• 0: Not allow

• None 0: Allow

Indicator Line

Color

Defines the color of the indicator line. The return value of the expression or the

dynamic script is the RGB value of the

defined color.

Time Variable The time data where the indicator line points to is

saved to this variable.

The return value is a string, which is the

name of the time variable.

Data Value

Variable

The data value of the curve where the indicator line

points to is saved to this variable.

The return value is a string, which is the

name of the data value variable.

9.4 Control - Historical Data List

The Historical Data List control displays all the saved historical data in a list.

In the Interface Editor window, click on the Historical Data List button in the tool

set on the left side. Move the cursor to the editting area, and you can see the cursor

become a cross. Drag the mouse to draw a rectangle, and the historical data list control

will be displayed in this rectangle, as shown in Figure 9.10.

Figure 9.10

After you draw the historical data list control, select it with a left click, and you will see

the Property List of the control on the right side of the editting area.

The properties of the historical data list control are described as follows:
Property Description Remarks on Dynamic

Properties

Number of List Rows Defines the maximum number of rows to be displayed in the

historical data list.

The extra rows of historical data will not be displayed.

No dynamic properties.

Height Between List Items Defines the height between the list items. No dynamic properties.

Display Field Defines the field to be displayed in the data list. It can be defined by

the designer to satisfy special needs. The default display field is the

time the data is collected.

Note: Click in the blank area on the right side of the display field, and

a list of historical data variables will be displayed. All the data in the

historical variable list must be defined in the historical data record

created in the Project Manager window. In other words, all the data

defined in the historical data record will be displayed in the list. You

can check the variables which you want to display in the historical

data list, and you can use the Move Up and Move Down buttons to

adjust the locations of the selected variables.

No dynamic properties.

Redrawing Variable Name of the redrawing variable of the Historical Data List control.

The value of this variable is bit. When the value of this variable is 1,

the system re-accesses the historical data and redraws the historical

data list control. After the redrawing is complete, the system

automatically resets the value of this variable to 0.

No dynamic properties.

Historical Record Name Indicates the name of the historical data record for which the

historical data list is drawn.

The historical data list displays all the data defined in the historical

data record.

This name is defined when you create the historical data record in

the Project Manager window.

No dynamic properties.

Start Time: (year, month,

date, hour, minute,

second)

End Time: (year, month,

date, hour, minute,

second)

Defines the range of data to be displayed by the historical data list

control, as follows:

• The start time is all 0 while the end time is not all 0: to display all

the data records ending at the end time.

• The start time is not all 0 while the end time is all 0: to display all

the data records starting from the start time.

• The start time is all 0 and the end time is all 0: to display all the

data defined in the historical data record.

• The start time is not all 0 and the end time is not all 0: to display

the data records starting from the start time and ending at the

end time.

The return value is an

integer.

9.5 Historical Data Inquiry

Besides dislaying the historical data with the Historical Trend Curve control and the

Historical Data List control, EASY also allows you to query the historical data using

system functions. The system functions allow you to query any saved historical data

easily.

EASY provides the following two ways for inquiring the historical data:

• Specifing inquiry fields

• Obtaining values of the fields of the selected record in the Historical Data List

control

No matter which way of the above you choose, you will need to define a inquiry

variable for the historical data to be queried. The queried results will be saved to the

defined inquiry variable. For details about defining the inquiry variable, please see section

9.2.3 Adding Data.

9.5.1 Inquiring Historical Data by Specified Fields

As stated before, the system saves a data defined in a historical data record

automatically when the defined saving condition is satisfied. Actually, it can be understood

that a record is added in the historical database every time when the system saves a data

automatically. This record is composed of fields which are all the data defined in a

historical data record. In other words, each field is associated to a historical data and its

inquiry variable, where the historical data is the data value to be displayed for the field and

the individual inquiry variable is for saving the value of the corresponding field when the

data matching the defined condition is searched during the historical data inquiry.

The function of inquiring historical data by specified fields is implemented by the

system functions history_query_all and history_query_data. Both system functions

require a parameter query_var_name, which stands for the name of the historical data to

which the field to be queried is associated. Before calling these two functions, you need to

assign an initial value to the inquiry variable to which the field is associated, so as to

define the inquiry condition. The function called will then search the historical database

based on the defined inquiry condition in the following sequence:

1) Obtain the field to which the historical data defined in the parameter

query_var_name is associated;

2) Search every record in the database to determine whether the historical value of

the field is equal to the value of the corresponding inquiry variable.

If equal, then the record is consiered matching the inquiry condition, and thus the

historical value of each field of the record will be assigned to the individually

corresponding inquiry variable.

The difference between the functions history_query_all and history_query_data is

that: history_query_all searches all the historical data records in the historical database,

while history_query_data searches only the specified historical data record.

For details about these two functions, please see section 9.8 System functions for

Processing Historical Data. The following of this section will take two examples to further

explain how to use these two functions.

Suppose that you have created a historical data record with the name as run_his,

and that you have added the following data, as shown in th table below, into the record

(The data saving conditions are not listed in the table below since they are not involved in

the discussion here; you can define these conditions according to your needs.):

Name of Historical Data Name of Inquiry Variable Description

test.V test.V_query Voltage

test.I test.I_query Input

test.P test.P_query Power

During the interface configuration, suppose that you have added a Historical Data

List control and associated it to the historical data record run_his (by setting Historical

Record Name in the control to run_his). Suppose that the following historical data are

generated after a while of system operation:

Record Number Voltage Input Power

1 10.45 5.6 100.5

2 20.12 10.34 200.3

3 25 12 230.3

4 14.23 8.7 230

To query the historical data record with the input value as 10.34, you need to do the

following:

1) Set the value of the inquiry variable test.I_query to which the Input field is

associated to 10.34;

2) Call the function history_query_data as follows:

history_query_data("test.I", "run_his").

In which, the first parameter query_var_name specifies the field test.I, namely, the

historical data corresponding to the Input field, the second parameter run_his is the name

of the historical data record.

After you call this function, the system will search through all the historical data in the

historical data record run_his until the first record with the Input value as 10.34 (the

second record in this example) is found.

Once found, the system automatically saves the value of individual field to the

corresponding inquiry variable.

Therefore, in this example, it will be like this after you call the function

history_query_data:

test.V_query=20.12, test.I_query=10.34, test.P_query=200.3.

9.5.2 Obtaining Value for Fields of a Selected Historical
Record

After you select a historical data record in the Historical Data List control, you can

call the function hislist_query_data to save the value of the individual field to the

corresponding inquiry variable.

For details about this function, see section 9.8 System Variables for Processing

Historical Data.

9.6 Downloading Historical Data

Based on your configuration settings, the historical data will be saved into the HMI

internal flash or the CF card.

The system generates a file for each historical data record per day. These files are

named in the following format: LCHistest200608200700.dat(LCHis+Name of the historical

data record+year+month+date+Serial NO.dat. You can download these files to a thumb

drive or a PC for futher inquiry.

At present, EASY supports the following two downloading methods:

• Downloading to the thumb drive through the system function

• Downloading to the PC through FTP

9.6.1 Downloading Historical Data to a Thumb Drive Using
System Function

You can call the system function sys_history_download() to export all the historical

data files saved in the HMI internal flash or the CF card to a thumb drive.

For details about this function, please see section 9.8 System Functions for

Processing Historical Data.

9.6.2 Downloading Historical Data to a PC Through FTP

You can selectively download the historical data files saved in the HMI internal flash

or the CF card to a PC through FTP.

To do this, you need to log in to the HMI through the FTP client tool. Both the login

username and the password are EASY.

Once logging in successfully, you will see the following directories:

• data: contains the user data saved in the HMI internal flash.

The user data refers to the data you have saved previously according to your

needs.

• hisdata: contains the historical data saved in the HMI internal flash.

• cfcard: contains the user data and the historical data saved in the CF card.

You can select from the above directories what data to download to your PC.

9.7 Data Format Conversion

You cannot immediately view the historical data files downloaded to the thumb drive

or the PC, because they are in the internal binary format (marked with the extension

name .dat).

To solve this issue, EASY provides the Historical Data Conversion tool to convert

these .dat files to .csv files, which can be recognized by EXCEL. As shown in Figure 9.11,

the installed EASY package contains the Historical Data Conversion tool.

Figure 9.11

Click on Historical Data Conversion, and you can see a dialog box as shown in

Figure 9.12.

Figure 9.12

The Historical Data Conversion tool works in two ways, whold folder conversion and

single file conversion, as described below:

• Whold Folder Conversion

For a folder which contains multiple historical data files, you can use this tool to

combine all the historical data in all these files into one CSV file, and then open it with

EXCEL.

To convert all the files in a folder, do as follows:

1) In Figure 9.12, click on the button in the Select a Folder area, and select

the folder you want to convert.

2) Set the name for the CSV file after conversion.

The default file name is lchisdata.

3) Click on the Convert button.

All the historical data files in the selected folder will be converted into one CSV file.

This CSV file will be saved in the same directory as the selected folder.

• Single File Conversion

For a single historical file, you can also convert it into a CSV file and open it with

EXCEL.

To convert a single file, do as follows:

1) In Figure 9.12, click on the button in the Select a File area, and select the

file you want to convert.

2) Click on the Convert button.

The selected historical data file will be converted into a CSV file. This CSV file will

be saved in the same path as the selected file.

9.8 System Functions for Processing Historical Data

9.8.1 sys_history_download

Original Function: int sys_history_download()

Function Description: To download historical data historical data from the HMI

internal flash or the CF card to a thumb drive.

Return Value: 0 Failed

 1 Successful

Parameter: None.

Example: sys_history_download()

9.8.2 history_query_all

Original Function: int history_query_all(char *query_var_name)

Function Description: To query historical data records from all historical

databases by the specified fields. For details, see section 9.5.1

Inquiring Historical Data by Specified Fields.

Return Value: 0: Failed

 1: Successful

Parameter: query_var_name: Name of the historical data with which the field to be

searched is associated.

Example: history_query_all("test.query_data1")

9.8.3 history_query_data

Original Function: int history_query_data(char *query_var_name, char
*history_name)

Function Description: To query historical data records from the defined

historical database by the specified fields. For details, see section

9.5.1 Inquiring Historical Data by Specified Fields.

Return Value: 0: Failed

 1: Successful

Parameters: query_var_name: Name of the historical data with which the field to

be searched is associated.

 history_name: Name of the historical data record.

Example: history_query_data("test.query_data1", "his")

9.8.4 hislist_query_data

Original Function: int hislist_query_data(char *window_name, char
*widget_name)

Function Description: To query the values of the various fields of the record

currently selected in the Historical List control.

Return Value: 0: Failed

 1: Successful

Parameters: window_name: Name of the window where the Historical List control

is located.

 widget_name: Name of the graphic component of the Historical List
control.

Example: history_query_data("main_pic", "hislist1")

9.8.5 hislist_delete_data

Original Function: int hislist_delete_data(char *window_name, char
*widget_name)

Function Description: To delete the currently selected record from the

Historical List control.

Return Value: 0: Failed

 1: Successful
Parameters: window_name: Name of the window where the Historical List control

is located.

 widget_name: Name of the graphic component of the Historical List

control.

Example: history_delete_data("main_pic", "hislist1")

Chapter 10 Alarms

To ensure safe production and operation on industrial sites, the alarm and event

generating and recording are crucially important.

EASY provides a powerful alarm and event system, which is described in details

below.

10.1 Overview

Alarms are generated by the system automatically when the values of the specified

settings exceed the pre-defined values. They can be taken as warnings agains serious

accidents.

Take the oil tank in the refinery for example. If no limit is pre-defined for the oil level

during the oil loading, then no alarms will be generated by the system to warn the

operators. In this case, overloading might happen, which might cause very serious

consequencies. In contrarary, if the oil level limit is pre-defined to trigger system alarms

when necessary, measures can be taken accordingly to prevent the accident.

System alarms are processed as follows: When alarms or events occur, the system

saves the alarm or event related information in the memory cache (the size of which can

be defined). EASY processes alarms and events according to the first-in-first-out principle.

That is to say, only the most recent alarm and event information is saved in the memory.

You can view the alarm and event information in the alarm window provided in the

HMI.

10.2 Configuring Size of Alarm Cache

The alarm cache is part of the system memory especially for saving alarm
information. The size of the alarm cache is configurable.

To configure the size of the alarm cache, do as follows:
1) Select Alarm Configuration on the left side of the Project Manager window,

and right-click on it.
2) Select Alarm Configuration from the right-click menu.

You will see a dialog box as shown in Figure 10.1.

Figure 10.1

The size of the alarm cache is calculated by the number of alarm information records

that can be saved in the cache. When the alarm records take more than the defined space,

the previous alarm information will be replaced by the new record.

10.3 Alarm Groups

10.3.1 Overview

To have the alarm information displayed, you must define the data for which alarms

are to be displayed, alarm conditions, and alarm contents. EASY allows you to add alarm

groups and then add alarm data into alarm groups.

You can define one or more alarm groups, and you can add one or more data for

which alarms are to be displayed into each alarm group. When adding alarm data into an

alarm group, you need to specify the data name and define the alarm condition and alarm

contents as well. When the defined alarm condition is satisfied, the alarm information will

be automatically saved into the alarm cache.

During the interface configuration, you can use the Alarm Window control to display

the alarm information. Each control can be associated with one alarm group only. The

Alarm Window control associated with the alarm group can display all the alarm data

defined in the alarm group.

10.3.2 Adding an Alarm Group

To add an alarm group, do as follows:
1) Select Alarm Configuration on the left side of the Project Manager window,

and right-click on it.
2) Select Add an Alarm Group on the right-click menu.

And you will see the following dialog box as shown in Figure 10.2.

Figure 10.2

3) Enter the name of the alarm group, and click on OK.

10.3.3 Adding Alarm Data

After you add an alarm group, you need to add alarm data into it.

To add the alarm data, do as follows:

1) Select an alarm group on the left side of the Project Manager window, and

right-click in the list pane on the right side of the window.

You will see a right-click menu as shown in Figure 10.3.

Figure 10.3

2) Select Add Data, and you will see the dialog box as shown in Figure 10.4.

Figure 10.4

The Alarm Data Information dialog box is composed of three parts:

• Basic Information

• Analog Alarm Configuration

• Digital Alarm Configuration

See the following sections for detailes.

10.3.3.1 Basic Information Configuration

This section defines the basic alarm information, which are valid for both analog and

digital alarms.

The configuration parameters for basic alarm information are described as follows:

• Database Name: Name of the database from where the alarm data are added

from.

• Real-Time Data Name: Name of the alarm data.

• Priority: Priority of the alarm.

• Status Variable: An int variable, which defines the current state of the alarm

data. The value of this variable can be one of the following:
 0 -- Normal
 1 -- Confirmed
 2 -- Restored
 3 -- Alarming

The above four states of Status Variable are described as follows:

• Normal: The value of Status Variable is within the defined value range, and no

alarms have ever been generated.

• Confirmed: The alarm is confirmed. This state indicates that the generated

alarm is already confirmed and processed. However, this alarm state still stays

in the system.

• Restored: The value of the variable is restored to the defined value range, and

no alarms will be generated.

• Alarming: The value of the variable matches the alarm condition and an alarm is

being generated.

If no status variable is defined, it means that you do not need to obtain the alarm

status for the alarm data.

10.3.3.2 Analog Alarm Configuration

The configuration in this section is valid only when the alarm data is analog. The

analog alarm data refers to variables of all types in the real-time database except the

digital data, including int, real type, and float variables.

Analog alarms are mostly over-limit alarms. Please see below for details.

Over-limit alarms are those generated by the system when the value of the analog

alarm data goes beyond the high or low alarm threshold. Over-limit alarms have

altogether four alarm thresholds: low low (LL), low (L), high (H), and high high (HH), as

shown in Figure 10.5.

Figure 10.5

As the value of a variable changes, alarms are generated by the system whenever a

threshold is exceeded. However, from the standpoint of the variable, only one over-limit

alarm will be generated at one time, since the value of it can only exceed one threshold at

one time. For example, if the value of a variable exceeds the HH threshold, only the HH

threshold alarm will be generated, while no high threshold alarm will be generated at the

same time.

However, in the case of the value of a variable exceeding two thresholds, it depends

on whether the two thresholds are of the same type. If they are, then no new alarm will be

generated, but it does not mean that the generated alarm will be restored. If not, then the

generated alarm will be restored and a new alarm will be generated.

For the four types of over-limit alarms, you can define only one, a few, or all of them.

As shown in Figure 10.6, you can define Allow Variable, Threshold Variable, and Alarm

Text, which are described below in details.

Figure 10.6

• Allow Variable: defines whether to allow the system to generate the alarm. You

can specify a variable for this. When the value of this variable is 1, the system will

generate an alarm when the alarm condition is satisfied. When the value is 0, no

alarms will be generated in the system. If no Allow Variable is specified, then

alarms will be generated whenever necessary.

• Threshold Variable: sets threshold values for the alarm variable to be defined.

The threshold values are displayed through variables.

• Alarm Text: defines the descriptive text of an alarm to be displayed when the

alarm condition is satisfied. The alarm text should not be more than 32 bytes.

10.3.3.3 Digital Alarm Configuration

The configuration in this section is valid only for digital alarm data (namely, bit

variables).

Digital alarms have the following two states:

• Open: An alarm is generated when the variable value becomes 1.

• Close: An alarm is generated when the variable value becomes 0.

The digital alarm properties are composed of two columns: Allow Variable and

Alarm Text, which are described in details below:

• Allow Variable: defines whether to allow the system to generate the alarm. You

can specify a variable for this. When the value of this variable is 1, the system will

generate an alarm when the alarm condition is satisfied. When the value is 0, no

alarms will be generated in the system. If no Allow Variable is specified, then

alarms will be generated whenever necessary.

• Alarm Text: defines the descriptive text of an alarm to be displayed when the

alarm condition is satisfied. The alarm text should not be more than 32 bytes.

10.4 Control - Alarm Window

The Alarm Window control displays the alarm information in a list.

In Interface Editor, click on the Alarm Window button in the tool set on the left

side. Move the mouse to the editting area on the right, and you can see the mouse

become a cross. Drag the cross to draw a rectangle. The Alarm Window control will be

displayed in this rectangle, as shown in Figure 10.7.

Figure 10.7

After you draw the Alarm Window control, select the list with a left click, and you will

see the Property List pane on the right side of the editting area, which lists properties of

the control.

The properties of the Alarm Window control are described in the table below.
Property Description Remarks on Dynamic

Properties

Rows of Alarms Defines the maximum rows of alarms to be displayed in the alarm

window.

When the system generates more than the defined maximum

rows of alarms, the previous rows of alarms will be replaced.

No dynamic properties.

Confirmed Color Defines the color for the Confirmed alarms.

Restored Color Defines the color for the Restored alarms.

Alarm Color Defines the color of the alarming alarms.

The return value of the

expression or dynamic script

is the RGB value of the

defined colors.

Display Field Defines the fields to be displayed in the Alarm Window list. No dynamic properties.

Height Between Defines the height between list items. No dynamic properties.

Property Description Remarks on Dynamic

Properties

List Items

Display Mode Two display modes are available:

• Displaying all historical alarm information: displays all

historical alarm information regarding alarming, alarm

confirmation, and alarm restoration.

• Displaying alarming information: displays only the

information regarding the alarming data.

No dynamic properties.

10.5 Alarm Confirmation

After an alarm is generated, you can call the system function alarm_confirm to

confirm the alarm, to indicate that you are aware of or have processed the alarm.

Please note that the function alarm_confirm confirms only the alarm record selected

in the Alarm Window control. For more details on this function, please see section 10.7

System Function for System Alarms.

10.6 Configuration Examples

Suppose that you want to set alarm thresholds for the liquid level variable as follows:

H = 750, HH = 800, L = 150, and LL = 50. You can set the thresholds as follows:

1. Add an int variable in the real-time database. Set the variable name to

yewei_alarm, the variable type to long, the data length to 4, and the initial value

to 0, as shown in the Data Configuration dialog box in Figure 10.8.

Figure 10.8

Add other variables yewei_Hhigh, yewei_high, yewei_low, and yewei_Llow in the

same way, and set their individual initial value to 800, 750, 150, and 50.

2. Add an alarm group Alarm1 in Aarm Configuration. Right-click on the alarm

group and open the Alarm Data Configuration dialog box. Configure the alarm

conditions as shown in Figure 10.9, and then click on OK.

Figure 10.9

3. Open Interface Editor, click on the Alarm Window button in the tool set on the

left to draw an alarm window in the editting area on the right. Set the alarm

window properties according to your needs and then save the interface. When

you are back in the Project Manager window, compile a project and then select

Offline Simulation, as shown in Figure 10.10.

Figure 10.10

4. During the offlline simulation, select Window and then Real-Time Data Display,

and you will see a dialog box as shown in Figure 10.11.

Figure 10.11

Change the value of the variable yewei_alarm to 30, and you will see an alarm

record displayed in the alarm window, as shown in Figure 10.12.

Figure 10.12

 Change the value to 60, 760, and then 850, and a series of alarms will be generated

and displayed in the alarm window, as shown in Figure 10.13.

Figure 10.13

As shown above,
• When the variable value is less than or equal to 50, an LL over-limit alarm is

generated and displayed;
• When the value is bigger than 50 but less than or equal to 150, the LL alarm is

restored, and an L over-limit alarm is generated and displayed;
• When the value is bigger than 150 but less than 750, the L alarm is restored and no

other alarms will be generated;
• When the value is bigger than or equal to 750 but less than 800, a H over-limit alarm is

generatd and displayed;
• When the value is bigger than or equal to 800, the H over-limit alarm is restored and

an HH over-limit alarm is generated and displayed.

10.7 System Function for System Alarms

10.7.1 alarm_confirm

Original Function: int alarm_confirm(char *window_name, char

*widget_name)

Function Description: To confirm the alarm record currently selected in the

Alarm Window control.

Return Value: 0: Failed

 1: Successful

Parameters: window_name: Name of the window where the Alarm Window

control is located.

 widget_name: Name of the graphic component in the alarm window.

Example: alarm_confirm("main_pic", "alarmwnd1")

Chapter 11 Device Configuration

11.1 Overview

During actual operation, you might often need to link various on-site devices, such as

PLC or I/O modules. EASY implements the modularized and layered design, which makes

it easier for device management and device communication.

Device management of EASY is achieved in the following three layers:

• Link Layer: The links here refer to communication links, such as serial ports and

network links. The links are categorized into master links and slave links (backup

links). Usually, the master link takes the responsibility for communication. When

the master link stops working (for example, timeout occurs), the backup link

carries on for data transfer.

• Device Layer: The devices here refer to individual IO devices, such as the IO

data acquisition module, grabber, or PLC. Multiple devices can be configured on

one link.

• Device Data Layer: The device data refers to individual data stored in each IO

device, such as the IR or HR register in Omron PLC. Each register is linked to a

specific real-time database, which achieves the data exchange between the

device and the linked real-time database.

11.2 Device Management

Considering that the device management of EASY is implemented in three layers, the

device configuration needs to be implemented following the three steps below:

1. Add a communication link.

2. Add devices for each communication link.

3. Add data for each device.

The following sections will describe these three steps in details.

11.2.1 Adding Communication Links

At present, EASY supports the following types of links:

• Serial Port: refers to the links which use the serial port for communication.

• Common Link: refers to the links which use the virtual link or the internal bus for

communication.

• TCP Network Client: refers to the links which use the TCP/IP network for

communication and the HMI as the TCP client.

• TCP Network Server: refers to the links which use the TCP/IP network for

communication and the HMI as the TCP server.

Each type of communication links has their own configuration items depending on

their specific characteristics. Meanwhile, all of the links share some common configuration

items, which are configured in Basic Link Information.

Let’s take a look at the basic link information configuration first and then the

characteristic configuration for each link.

11.2.1.1 Configuring Basic Link Information

To configure the basic link information while adding a communication link, click on the

Basic Link Info tab in the link configuration dialog box as shown in Figure 11.1.

Figure 11.1

The configuration parameters in Figure 11.1 are described as follows:

• Link Name: defines the name of the communication link you are going to add.

• Scan Interval: defines the interval for scanning this communication link. The

system scans all the data stored in all the devices configured for this link based

on the interval defined here. (unit: ms)

• Redundancy Type: is for the redundancy configuration for the link. The available

redundancy types are Master Link and Backup Link. For details, see the

Redundancy System section. If the added link does not support redundancy, you

need to set Redundancy Type to Master Link.

• Master Link Name: is for the redundancy configuration for the link. This

parameter is valid only when Redundancy Type is Backup Link. It defines the

name of the master link to which the backup link is associated. For details, see

the Redundancy System section.

• Timeout Time: defines how long before the communication link times out. During

the communication between the HMI and the link, the link is considered timed-out

if the HMI does not get reply from the devices on this link after the period of time

specified here. (unit: ms)

• Status Variable: must be an int variable. The value of this variable can be one of

the following based on the current communication state of the link:
 0 -- Normal
 1 -- Port not available
 2 -- Timeout
 3 -- Waiting (Default communication state of the backup link. When the

master link stops working, the status of the backup link changes from
Waiting to Normal.)

 4 -- Suspended (When the value of Control Variable becomes 1, the
link scanning is suspended, which means the HMI stops communicating
with the devices on the link.

If no status variable is defined, it means that you do not need to get the

communication status of the link.

• Control Variable: Must be an int variable. The value can be one of the following:
 0 -- Activated
 1 -- Suspended (namely, the link scanning is suspended, which means

the HMI stops communicating with the devices on the link)
If no control variable is defined, it means that the link is always activated.

• Additional Parameter: defines the additional parameter for the link.

• Disable the link: When you check this option, the link will be disabled, which

means the system will not load the link and the devices configured for the link.

11.2.1.2 Adding a Serial Port

Serial ports refer to the links which use the serial port for communication.

To add a serial port, do as follows:

1) Select Device Configuration on the left side of the Project Manager window,

and then right-click on it.

You will see a right-click menu as shown in Figure 11.2.

Figure 11.2

2) Select Serial Port, and you will see a dialog box as shown in Figure 11.3.

Figure 11.3

3) Click on the Basic Link Info tab, and you can configure the basic link information.

For details, see section 11.2.1.1 Configuring Basic Link Information.

4) Click on the Serial Communication Port Info tab, and you can configure the

parameters for serial port communication as shown in Figure 11.4.

Figure 11.4

You can configure Serial Port Number, Baud Rate, Data Bit, Stop Bit, and Verify

Mode of the serial port according to your actual needs.

11.2.1.3 Adding a Common Link

Common links refer to the links which use the virtual link or the internal bus for

communication. For the virtual link, you can configure virtual IO devices. For details, see

section 11.2.2.1 Adding a Device. Regarding the internal bus, it is currently reserved for

future expansion since no devices in the system use the internal bus for communication.

To add a common link, do as follows:

1) Select Device Configuration on the left side of the Project Manager window

and right-click on it.

You will see a right-click menu as shown in Figure 11.5.

Figure 11.5

2) Select Common Link, and you will see a dialog box as shown in Figure 11.6.

Figure 11.6

3) Click on the Basic Link Info tab, and you can configure the basic link information.

For details, see section 11.2.1.1 Configuring Basic Link Information. Common

links have no characteristic configuration items of their own.

11.2.1.4 Adding a TCP Network Client

The TCP Network Client refers to the link which uses the TCP/IP network for

communication and the HMI as the TCP client.

To add a TCP Network Client, do as follows:

1) Select Device Configuration on the left side of the Project Manager window

and right-click on it.

You will see a right-click menu as shown in Figure 11.7.

Figure 11.7

2) Select TCP Network Client, and you will see a dialog box as shown in Figure

11.8.

Figure 11.8

3) Click on the Basic Link Info tab, and you can configure the basic link information.

For details, see section 11.2.1.1 Configuring Basic Link Information.

Click on the TCP Network Client Configuration tab, and you can configure

communication parameters for the TCP Client, as shown in Figure 11.9.

Figure 11.9

The parameters in Figure 11.9 are described as follows:
 Server IP Address: defines the IP address of the TCP server to which the HMI is

to be connected.

 Server Port Number: specifies the port number of the TCP server to which the
HMI is to be connected.

11.2.1.5 Adding a TCP Network Server

The TCP Network Server refers to the link which uses the TCP/IP network for

communication and the HMI as the TCP server.

To add a TCP Network Server, do as follows:

1) Select Device Configuration on the left side of the Project Manager window

and right-click on it.

You will see a right-click menu as shown in Figure 11.10.

Figure 11.10

2) Select TCP Network Server, and you will see a dialog box as shown in Figure

11.11.

Figure 11.11

3) Click on the Basic Link Info tab, and you can configure the basic link information.

For details, see section 11.2.1.1 Configuring Basic Link Information.

Click on the TCP Network Client Configuration tab, and you can configure

communication parameters for the TCP client, as shown in Figure 11.12.

Figure 11.12

The parameter in Figure 11.12 is described as follows:
 Server Port Number: specifies the port number to be intercepted when the HMI

runs as the TCP server.

11.2.1.6 Deleting a Communication Link

To delete an added communication link, do as follows:

1) Select the communication link you want to delete from the left side of the Project

Manager window and right-click on it.

You will see a right-click menu as shown in Figure 11.13.

Figure 11.13

2) Select Delete a Communication Link.

The selected link will be deleted.

11.2.1.7 Modifying the Link Configuration

To modify an added communication link, do as follows:

1) Select the communication link you want to modify from the left side of the Project

Manager window and right-click on it.

You will see a right-click menu as shown in Figure 11.14.

Figure 11.14

2) Select Modify.

You can modify the link according to your needs.

11.2.2 Adding Devices

After you define a communication link, you can configure devices for the link. The

devices which can be configured for a link depends on the type of the link. For example, if

the communication link is a Common Link, only Virtual IO Devices can be configured; if

the communication link is a TCP Network Client, only three devices can be configured,

which are EASY HMI, Modbus TCP Primary Device, and Siemens S7 300 Series PLC

(using the Hilscher Netlink-MPI adaptor).

For details about each device, please see section 11.3 List of Devices. The following

part will focus on how to add a device.

11.2.2.1 Adding a Device

To add a device, do as follows:

1) Select a link for which you want to add a device on the left side of the Project

Manager window and right-click on it, as shown in Figure 11.15.

Figure 11.15

2) Select Add a Device, and you will see a dialog box as shown in Figure 11.16.

Figure 11.16

The parameters in Figure 11.16 are described as follows:
 Device Name: specifies the name of the device to be added with which the HMI

is to communcate.
 Device Address: differentiates various devices on the link. The definition of the

device address varies according to the protocol used by the device.
 Device Driver Name: specifies the name of the driver for the device to be added.

The devices on the link use different protocols for communication. EASY
provides device drivers for all of the devices based on the different protocols
used.

 Manufacturer: specifies the name of the device manufacturer. It is allowed to
leave it blank.

 Product Model: specifies the product model of the device. Considering that
even devices of the same manufacturer might use different communication
protocols, it is required to specify the product model in addition to the name of
the device driver. For example, the modules of the ICP DAS I-7000 series are of
different models, such as 4050 or 4117.

 Status Variable: must be an int variable. The value of this variable can be one of
the following based on the current communication state of the link:

 -1 -- Device initialization failed
 0 -- Device initialization successful

If no status variable is defined, it means that you do not need to get the

communication status of the device.
 Additional Parameter: defines the additional parameter for the device to be

added.
 Disable the device: When you check this option, the device will be disabled,

which means the system will not load or commnicate with the device.

11.2.2.2 Deleting a Device

To delete an added device, do as follows:

1) Select the device to be deleted on the left side of the Project Manager

window and right-click on it.

You will see a right-click menu as shown in Figure 11.17.

Figure 11.17

2) Select Delete a Device.

The selected device will be deleted.

11.2.2.3 Modifying a Device

To modify an added device, do as follows:

1) Select the device to be modified on the left side of the Project Manager

window and right-click on it.

You will see a right-click menu as shown in Figure 11.18.

Figure 11.18

2) Select Modify.

You can modify the device according to your needs.

11.2.3 Adding Data

After adding a device, you can add device data for this device. The device data which

can be added varies depending on the device itself. For example, for Siemens S7 200

series PLC, only the device data of the I, Q, M, and VW types can be added; while for the

Delta PLC, only the device data of the X, Y, M, and S types can be added.

11.2.3.1 Adding Data

To add a device data, do as follows:

1) Select the device for which you want to add data on the left side of the

Project Manager window and right-click on it.

You will see a right-click menu as shown in Figure 11.19.

Figure 11.19

2) Select Add Data, and you will see a dialog box as shown in Figure 11.20.

Figure 11.20

The parameters in Figure 11.20 are described as follows:
 Data Type: defines the type of the device data to be added. The types of device

data which can be added for a device varies depending on the device itself.
 Data Group: The concept of data group is adopted by EASY to enhance data

transfer efficiency. For the data which can be accessed in the same mode and
are of the same data type and data group, EASY allows packing them into one
data package during the communication with the device, instead of having one
data in one package. However, while grouping data, it is recommended to avoid
packing two data which are far apart from each other into the same data group.
For example, to access two data, VW0 and VW1000, from Simense S7-200
series PLC. If you pack these two data into the same data group, the system will
need to read all the data from VW0 to VW1000 first and then picks out the two
target data VW0 and VW1000. However, accessing such huge volume of data at
one time might not be allowed by the protocol involved (eah protocol has its own
maximum transfer volume), and thus results in communication failure. At present,
the system supports 8 data groups in total.

 The Do Not Group option: When you check this option, the data will not be
grouped, which means the system will access this data in a separate message.
As stated above, you can group data so that the system can access multiple data
at one time, which helps reduce message transfer and thus enhance
communication efficiency. From this sense, it is recommended to group the data
as much as possible. However, if you group a data which is too discrete, the
returned communication message for the scattered data might be too long, which
might cause communication failure. In this case, it is not wise to group the data; it
will be preferable if the system accesses it separately.

 Data Address: defines the device address for differentiating variaous devices on
the link. The definition of the device address varies depending on the protocol
used by the device.

 Real-Time Data Name: specifies the real-time data in the real-time database

which is associated to the device data, which achieves data exchange between
the device and the real-time database.

 Status Variable Name: must be an int variable. The value of this variable can be
one of the following based on the current communication state of the data:

 0 -- Normal
 -1 -- System error
 -2 -- Port error
 -3 -- Communication timeout
 -4 -- Message error
 Other -- Other error values defined in the protocol

If no status variable is defined, it means that you do not need to get the

communication status of the data.
 Access Mode: defines how to access the data. At present, the system supports

the following access modes:
 Repeat Read – Repeately reading the value of the device data and then

assigning the value to the real-time database data to which the device data
is associated.

 Repeat Write – Repeatedly write the value of the real-time database data to
the associated device data

 Repeat Read and Single Write – Repeatedly reading the value of the device
data and then assigning the value to the real-time database data to which
the device data is associated, while writing the value to the associated
device data only after the value of the real-time database data changes.

 Single Write – Writing the value to the associated device data only after the
value of the real-time database data changes.

 Disable the data: When you check this option, the data will be disabled, which
means the system will not load or access the data.

11.2.3.2 Deleting Data

To delete an added data, do as follows:

1) Select the device for which you want to delete a data on the left side of the

Project Manager window, and select the data to be deleted in the list pane

on the right side.

2) Right-click on the data, and you will see a right-click menu as shown in

Figure 11.21.

Figure 11.21

3) Select Delete Data.

The selected data will be deleted.

11.2.3.3 Modifying Data

To modify an added data, do as follows:

1) Select the device for which you want to modify a data on the left side of the

Project Manager window, and select the data to be modified in the list pane

on the right side.

2) Right-click on the data, and you will see a right-click menu as shown in

Figure 11.22.

Figure 11.22

3) Select Modify.

You can modify the data according to your needs.

11.3 Device List

This section lists all the devices supported by EASY at present.

These devices can be categorized as follows based on the types of the

communication links:

• Serial Ports

• Common Links

• TCP Network Clients

• TCP Network Servers

11.3.1 Serial Ports

11.3.1.1 Modbus RTU Primary Devices

The HMI works as the Modubs primary device and uses the Modbus RTU protocol

for communication.

At present, the system supports the following types of data:

Data Type Description

Data Type Description

DI bit Input node. Read-only.

In the Modubs protocol, corresponding to:

Function number: 02 (Read the discrete input)

DO Bit Output node. Read and write.

In the Modubs protocol, corresponding to:

Function number: 01 (Read the loop)

Function number: 15 (Write multiple loops)

AI Short, ushort Input register. Read-only.

In the Modubs protocol, corresponding to:

Function number: 04 (Read the input register)

AO Short, ushort Holding register. Read and write.

In the Modubs protocol, corresponding to:

Function number: 03 (Read the holding register)

Function number: 16 (Write multiple registers)

AI_BIT Bit To obtain a certain bit of the AI data.

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to obtain the third bit of the input register with the

address as 10 (Note: The bit number starts from 0 – the lowest bit), then you will

need to select the data type AI_BIT and set the data address as 10.3 while adding

the device data.

AO_BIT Bit To read and write a certain bit of the AO data.

Communiation Mode: Same as that for the AO data, corresponding to Function

Nmber 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the third bit of the holding

register with the address as 10 (Note: The bit number starts from 0 – the lowest

bit), then you will need to select the data type AO_BIT and set the data address

as 10.3 while adding the device data.

AI_LONG

1

long,ulong To resolute two AI data with continuous addresses as an int value.

Resolution Mode: The AI data with the lower address is resoluted as the higer 16

bits of the int value, while the AI data with the higer address as the lower 16 bits.

For example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the

int value 0x1234.

Communiation Mode: Same as that for the AI data, corresponding to Function

Data Type Description

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the int value saved for the two data , AI10

and AI11, then you will need to select the data type AI_LONG1 and set the data

address as 10 while adding the device data.

AI_LONG

2

long,ulong To resolute two AI data with continuous addresses as an int value.

Resolution Mode: The AI data with the lower address is resoluted as the lower 16

bits of the int value, while the AI data with the higer address as the higher 16 bits.

For example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the

int value 0x3412.

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the int value saved for the two data , AI10

and AI11, then you will need to select the data type AI_LONG2 and set the data

address as 10 while adding the device data.

AO_LON

G1

long,ulong To resolute two AO data with continuous addresses as an int value.

Resolution Mode: The AO data with the lower address is resoluted as the higer 16

bits of the int value, while the AO data with the higer address as the lower 16

bits. For example, the two AO data, AO10=0x12 and AO11=0x34, will be

resoluted as the int value 0x1234.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the int value saved for the two

data , AO10 and AO11, then you will need to select the data type AO_LONG1 and

set the data address as 10 while adding the device data.

AO_LON

G2

long,ulong To resolute two AO data with continuous addresses as an int value.

Resolution Mode: The AO data with the lower address is resoluted as the lower

16 bits of the int value, while the AO data with the higer address as the higer 16

bits. For example, the two AO data, AO10=0x12 and AO11=0x34, will be

resoluted as the int value 0x3412.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the int value saved for the two

data , AO10 and AO11, then you will need to select the data type AO_LONG2 and

set the data address as 10 while adding the device data.

Data Type Description

AI_FLOAT

1

float To resolute two AI data with continuous addresses as a float value.

Resolution Mode: The AI data with the lower address is resoluted as the higer 16

bits of the float value, while the AI data with the higer address as the lower 16

bits.

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the float value saved for the two data,

AI10 and AI11, then you will need to select the data type AI_FLOAT1 and set the

data address as 10 while adding the device data.

AI_FLOAT

2

float To resolute two AI data with continuous addresses as a float value.

Resolution Mode: The AI data with the lower address is resoluted as the lower 16

bits of the float value, while the AI data with the higer address as the higer 16

bits.

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the float value saved for the two data,

AI10 and AI11, then you will need to select the data type AI_FLOAT2 and set the

data address as 10 while adding the device data.

AO_FLOA

T1

float To resolute two AO data with continuous addresses as a float value.

Resolution Mode: The AO data with the lower address is resoluted as the higer 16

bits of the float value, while the AO data with the higer address as the lower 16

bits.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the float value saved for the two

data, AO10 and AO11, then you will need to select the data type AO_FLOAT1 and

set the data address as 10 while adding the device data.

AO_FLOA

T2

float To resolute two AO data with continuous addresses as a float value.

Resolution Mode: The AO data with the lower address is resoluted as the lower

16 bits of the float value, while the AO data with the higer address as the higer 16

bits.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the float value saved for the two

Data Type Description

data, AO10 and AO11, then you will need to select the data type AO_FLOAT2 and

set the data address as 10 while adding the device data.

11.3.1.2 Modbus RTU Slave Devices

The HMI works as the Modubs slave device and uses the Modbus RTU protocol for

communication.

At present, the system supports the following types of data:

Data Type Description

DI bit Input node. Read-only.

In the Modubs protocol, corresponding to:

Function number: 02 (Read the discrete input)

DO bit Output node. Read and write.

In the Modubs protocol, corresponding to:

Function number: 01 (Read the loop)

Function number: 5 (Write a single loop)

Function number: 15 (Write multiple loops)

AI short, ushort Input register. Read-only.

In the Modubs protocol, corresponding to:

Function number: 04 (Read the input register)

AO short, ushort Holding register. Read and write.

In the Modubs protocol, corresponding to:

Function number: 03 (Read the holding register)

Function number: 6 (Write a single register)

Function number: 16 (Write multiple registers)

Note:

When working as the Modbus slave device, the HMI receives requests from the

primary station, carries out operations accordingly, and then responds to the primary

station. The operation mode of the Modubs slave device can be described as “Passively

Triggered”. Therefore, the parameters Data Group and Access Mode, and the option

Disable the data for the data configuration are meaningless, and thus are ignored by the

system.

11.3.1.3 Modbus ASCII Primary Devices

The HMI works as the Modubs primary device and uses the Modbus ASCII protocol

for communication.

At present, the system supports the following types of data:

Data Type Description

DI bit Input node. Read-only.

In the Modubs protocol, corresponding to:

Function number: 02 (Read the discrete input)

DO bit Output node. Read and write.

In the Modubs protocol, corresponding to:

Function number: 01 (Read the loop)

Function number: 15 (Write multiple loops)

AI Short, ushort Input register. Read-only.

In the Modubs protocol, corresponding to:

Function number: 04 (Read the input register)

AO Short, ushort Holding register. Read and write.

In the Modubs protocol, corresponding to:

Function number: 03 (Read the holding register)

Function number: 16 (Write multiple registers)

AI_BIT bit To obtain a certain bit of the AI data.

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to obtain the third bit of the input register with the

address as 10 (Note: The bit number starts from 0 – the lowest bit), then you will

need to select the data type AI_BIT and set the data address as 10.3 while adding

the device data.

AO_BIT bit To obtain a certain bit of the AO data.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to obtain the third bit of the holding register with

the address as 10 (Note: The bit number starts from 0 – the lowest bit), then you

will need to select the data type AO_BIT and set the data address as 10.3 while

adding the device data.

AI_LONG1 long,ulong To resolute two AI data with continuous addresses as an int value.

Resolution Mode: The AI data with the lower address is resoluted as the higer 16

bits of the int value, while the AI data with the higer address as the lower 16 bits.

For example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the

int value 0x1234.

Data Type Description

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the int value saved for the two data , AI10

and AI11, then you will need to select the data type AI_LONG1 and set the data

address as 10 while adding the device data.

AI_LONG2 Long,ulong To resolute two AI data with continuous addresses as an int value.

Resolution Mode: The AI data with the lower address is resoluted as the lower 16

bits of the int value, while the AI data with the higer address as the higher 16 bits.

For example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the

int value 0x3412.

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the int value saved for the two data , AI10

and AI11, then you will need to select the data type AI_LONG2 and set the data

address as 10 while adding the device data.

AO_LONG1 Long,ulong To resolute two AO data with continuous addresses as an int value.

Resolution Mode: The AO data with the lower address is resoluted as the higer 16

bits of the int value, while the AO data with the higer address as the lower 16

bits. For example, the two AO data, AO10=0x12 and AO11=0x34, will be

resoluted as the int value 0x1234.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the int value saved for the two

data , AO10 and AO11, then you will need to select the data type AO_LONG1 and

set the data address as 10 while adding the device data.

AO_LONG2 long,ulong To resolute two AO data with continuous addresses as an int value.

Resolution Mode: The AO data with the lower address is resoluted as the lower

16 bits of the int value, while the AO data with the higer address as the higer 16

bits. For example, the two AO data, AO10=0x12 and AO11=0x34, will be

resoluted as the int value 0x3412.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the int value saved for the two

data , AO10 and AO11, then you will need to select the data type AO_LONG2 and

Data Type Description

set the data address as 10 while adding the device data.

AI_FLOAT1 float To resolute two AI data with continuous addresses as a float value.

Resolution Mode: The AI data with the lower address is resoluted as the higer 16

bits of the float value, while the AI data with the higer address as the lower 16

bits.

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the float value saved for the two data,

AI10 and AI11, then you will need to select the data type AI_FLOAT1 and set the

data address as 10 while adding the device data.

AI_FLOAT2 float To resolute two AI data with continuous addresses as a float value.

Resolution Mode: The AI data with the lower address is resoluted as the lower 16

bits of the float value, while the AI data with the higer address as the higer 16

bits.

Communiation Mode: Same as that for the AI data, corresponding to Function

Number 04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the float value saved for the two data,

AI10 and AI11, then you will need to select the data type AI_FLOAT2 and set the

data address as 10 while adding the device data.

AO_FLOAT

1

float To resolute two AO data with continuous addresses as a float value.

Resolution Mode: The AO data with the lower address is resoluted as the higer 16

bits of the float value, while the AO data with the higer address as the lower 16

bits.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the float value saved for the two

data, AO10 and AO11, then you will need to select the data type AO_FLOAT1 and

set the data address as 10 while adding the device data.

AO_FLOAT

2

float To resolute two AO data with continuous addresses as a float value.

Resolution Mode: The AO data with the lower address is resoluted as the lower

16 bits of the float value, while the AO data with the higer address as the higer 16

bits.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Data Type Description

Configuration Mode: If you want to read and write the float value saved for the two

data, AO10 and AO11, then you will need to select the data type AO_FLOAT2 and

set the data address as 10 while adding the device data.

11.3.1.4 Mitsubishi FX2N Series PLC

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS485

Data Bit 7

Stop Bit 1

Baud Rate 9600

Parity Check Even

Device Address 0

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address Format Description

X bit OOO External input node

Y bit OOO External output node

M bit DDD Internal auxiliary node

S bit DDD Special auxiliary node

T bit DDD Timer node

C bit DDD Couter node

TV short, ushort DDD Timer register

CV short, ushort DDD Counter register

D short, ushort DDD Data register

D_ARRA

Y

short, ushort data

array

DDD~DDD Data array stored in the data register

Note: D stands for the decimal system, and O stands for the octal system.

11.3.1.5 Mitsubishi Q02H PLC

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Parameter Default Value

Communication Port Type RS232

Data Bit 8

Stop Bit 1

Baud Rate 115200

Parity Check Odd

Device Address 0

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address Format Description

X bit HHH External input node

Y bit HHH External output node

M bit DDDD Internal auxiliary node

L bit DDDD Auxiliary node

F bit DDDD Alarm node

V bit DDDD Edge-triggered node

B bit HHH Link register node

TC bit DDD Timer loop

SS bit DDD Holding timer node

SC bit DDD Holding timer loop

CS bit DDD Counter node

CC bit DDD Counter loop

SB bit HHH Special connection register node

S bit DDDD Stepping register

DX bit HHH Direct input node

DY bit HHH Direct output node

TS bit DDD Timer node

W short, ushort HHH Connection register

TN short, ushort DDD Current timer value

SN short, ushort DDD Current value of the holding register

CN short, ushort DDD Current counter value

R short, ushort DDDD File register

SW short, ushort HHH Special connection register

Z short, ushort D Index register

ZR short, ushort HHHH File register

Data Type Address Format Description

D short, ushort DDDD Data register

Note: D stands for the decimal system, and H stands for the hex system with the

range as 0-F.

11.3.1.6 ICP DAS I-7000 Series (ADVANTECH ADAM4000/4100 Series) IO Modules

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address Format Description

DI Bit DI input, for DI or mixed modules

DO Bit DO output, for DO or mixed modules

AI Float AI input, for AI modules and only can be read as project

quantities

AO Float AO output, for AO modules and only can be written in

as project quantities

COUNTER Long Counter, for the modules with the counter function and

for reading the counter value

CLEARCOUNTER Bit

Decimal

For the modules with the counter function.

If you set the data value as 1, the counter value will be

reset back to 0.

Notes:

1) For the IO modules of this series, you need to specify the specific product model

considering the slight difference in the communication protocols used. Regarding the

model numbers containing D, for example 7045D, you can put the model number as

7045.

2) The IO modules of this series support two types of parity checks: checksum enable

and checksum disable. While adding a device, if you do not specify the additional

parameter for the device, then checksum enable is used; to activate checksum

disable, you will need to enter checksum=0 in the Additional Parameter text box.

11.3.1.7 Siemens S7-200 Series PLC

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS485

Data Bit 8

Parameter Default Value

Stop Bit 1

Baud Rate 9600

Parity Check Even

Device Address 2

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address format Description

I Bit DDD.O Digital input

Q Bit DDD.O Digital Output

M Bit DDD.O Mark bit of the internal register

VW short,ushort DDDD Variable of the internal register (word)

AIW short,ushort DDDD Analog input

AQW short,ushort DDDD Analog output

VB char,uchar DDDD Variable of the internal register (byte)

VD long, ulong DDDD Variable of the internal register (double-byte)

Note: D stands for the decimal system, and O stands for the octal system.

Notes:

Siemens 200 series PLC supports two communication modes, single item and

multi items. While adding a device, if you do not specify the additional parameter or the

specified additional parameter is multiitem=0, then single item is used; to activate multi

items, you will need to enter multiitem=1 in the Additional Parameter text box.

The two communication modes, single item and multi items are described in

details as below:

• single item: allows accessing only one type of data in one communication

message. For example, to access the four data I0.0, I1.0, Q0.0, and Q1.0 in the

single item mode, you will need to use two communication messages (one for

accessing I0.0 and I1.0, and the other for accessing Q0.0 and Q1.0), because

the I data and the Q data are of two different types.

• multi items: allows accessing various types of data in one communication

message. To access the same four data mentioned above, the multi items

mode allows accessing all of the four data at one time in one message,

separating I0.0 and I1.0 as one item and Q0.0 and Q1.0 as another item.

From the example above, it is obvious that the multi items mode provides higher

communication efficiency compared with the single item mode. However, accessing

various types of data in one message might make the message too long to be allowed by

the Siemens communication protocol (256 bytes allowed the most). If a message contains

data more than 256 bytes, it will end up with communication failure.

In terms of EASY, the multi items mode will group the data accessed in the same

mode ine one message, which will maximize the communication efficiency. However, it

might cause the communication message to be longer than 256 bytes allowed by the

protocol involved. Considering all of this, it can be concluded that the multi items mode is

suitable for the situations with small volume of communication data only.

11.3.1.8 Siemens S7-300 Series PLC (Using the MPI Adaptor)

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS232

Data Bit 8

Stop Bit 1

Baud Rate 19200

Parity Check Odd

Device Address 2

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address format Description

I bit DDD.O Digital input

Q bit DDD.O Digital Output

M bit DDD.O Mark bit of the internal register

PIB char,uchar DDDD Analog input (byte)

PIW short,ushort DDDD Analog input (word)

PID long, ulong DDDD Analog input (double word)

PQB char,uchar DDDD Analog output (byte)

PQW short,ushort DDDD Analog output (word)

PQD long, ulong DDDD Analog output (double word)

DBX bit DDDD.O Data block (bit)

DBB char,uchar DDDD Data block (byte)

DBW short,ushort DDDD Data block (word)

DBD long, ulong DDDD Data block (double word)

Note: D stands for the decimal system, and O stands for the octal system.

11.3.1.9 Omron PLC

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS232

Data Bit 7

Stop Bit 2

Baud Rate 9600

Parity Check Even

Device Address 0

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address format Description

IR bit DDDBB I/O and internal relay

HR bit DDDBB Holding relay

AR bit DDDBB Auxiliary relay

LR bit DDDBB Link relay

TC short,ushort DDD Timer/Counter register

DM short,ushort DDDD Data register

Note: D stands for the decimal system, and B stands for the bit coding with the range

as 0-15.

11.3.1.10 LG Series PLC (Using the CNET Protocol)

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS232

Data Bit 8

Stop Bit 1

Baud Rate 19200

Parity Check N/A

Device Address 0

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address format Description

P bit DDDH Input/Output relay

M bit DDDH Internal auxiliary relay

L bit DDDH Link relay

K bit DDDH Holding relay

C bit DDDH Counter relay

T bit DDDH Timer relay

F bit DDDH Special relay

D short,ushort DDD Data register

S short,ushort DDDD Register

CV short,ushort DDDD Current counter value

TV short,ushort DDDD Current timer value

Note: D stands for the decimal system, and H stands for the hex system with the

range as 0-F.

11.3.1.11 LG Series PLC (Using the LOAD Protocol)

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS232

Data Bit 8

Stop Bit 1

Baud Rate 38400

Parity Check N/A

Device Address 0

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address format Description

P bit DDDH Input/Output relay

M bit DDDH Internal auxiliary relay

L bit DDDH Link relay

K bit DDDH Holding relay

C bit DDDH Counter relay

T bit DDDH Timer relay

F bit DDDH Special relay

Data Type Address format Description

D short,ushort DDD Data register

S short,ushort DDDD Register

CV short,ushort DDDD Current counter value

TV short,ushort DDDD Current timer value

Note: D stands for the decimal system, and H stands for the hex system with the

range as 0-F.

11.3.1.12 Delta PLC

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS232

Data Bit 7

Stop Bit 1

Baud Rate 9600

Parity Check Even

Device Address 1

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address format Description

X bit OOO Digital input relay

Y bit OOO Digital output relay

M bit DDD Internal auxiliary relay

S bit DDD Sequential control relay

T bit DDD Timer relay

C bit DDD Counter relay

D short,ushort DDDD Data register

TV short,ushort DDDD Timer register

CV short,ushort DDDD Counter register (word)

CV2 long, ulong DDDD Counter register (double word)

Note: D stands for the decimal system, and O stands for the octal system with the

range as 0-7.

11.3.1.13 Panasonic NAIS FP Series PLC

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS232

Data Bit 8

Stop Bit 1

Baud Rate 9600

Parity Check Odd

Device Address 1

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address format Description

X bit DDDH Digital input relay

Y bit DDDH Digital output relay

R bit DDDH Internal auxiliary relay

L bit DDDH Link control relay

T bit DDD Timer relay

C bit DDD Counter relay

DT short,ushort DDD Data register

SV short,ushort DDD Preset timer/counter value register

EV short,ushort DDD Actual timer/counter value register

Note: D stands for the decimal system, and H stands for the octal system with the

range as 0-F.

11.3.1.14 Emerson Series PLC (Using the Modbus RTU protocol)

The default values of the related communication parameters are listed as follows:

Parameter Default Value

Communication Port Type RS485

Data Bit 8

Stop Bit 1

Baud Rate 19200

Parity Check Even

Device Address 1

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address format Description

X bit OOO Digital input relay

Y bit OOO Digital output relay

M bit DDDD Auxiliary relay

SM bit DDD Special auxiliary relay

S bit DDD Stepping register

T bit DDD Timer loop

C bit DDD Counter loop

D short,ushort DDDD Data register

SD short,ushort DDD Special data register

Z short,ushort DDD Index register

TV short,ushort DDD Timer

CV short,ushort DDD Counter

D_D long,ulong DDDD Data register (double word)

CV_D long,ulong DDD Counter (double word)

Note: D stands for the decimal system, and H stands for the octal system with the

range as 0-F.

11.3.2 Communication Links

11.3.2.1 Virtual IO Devices

EASY provides internal virtual IO devices. They can be accessed and operated in

almost the same mode as the actual devices. The only difference is that reading and

writing the virtual devices do not involve the accessing of the serial port or the TCP/IP

network. Besides, you can use the virtual IO devices for tesing purpose.

At present, the system supports the following types of data, as listed in the table

below:

Data Symbol Data Type Function

DI bit Read-only DI bits

DO bit Write-only DO bits

DIO bit Read and write digitals

Data Symbol Data Type Function

AI short,ushort Read-only AI values

AO short,ushort Write-only AO values

AIO short,ushort Read and write analogs

INC
bit,char,uchar,short,us

hort,long,ulong

Auto-increment int variable; 1 added each time;

read and write

INCF float,double
Auto-increment float variable; 1 added each

time; read and write

DEC
bit,char,uchar,short

ushort,long,ulong

Auto-decrement int variable; 1 added each time;

read and write

DECF float,double
Auto-decrement float variable; 1 added each

time; read and write

RAND
bit,char,uchar,short

ushort,long,ulong

Random int variable, one random value

generated each time

COMERR
bit,char,uchar,short

ushort,long,ulong

To set the communication status variable, with

the value range as below:

• 1: Link timeout

• 2: System error

• 0: Normal

11.3.3 TCP Network Clients

11.3.3.1 EASY HMIs

TCP network clients are used for the mutual communication between EASY HMIs.

You can add EASY HMI devices, and the HMIs can mutually access the real-time data

from the real-time database of each other.

While adding EASY HMI devices, you must set the server port number to 8200.

11.3.3.2 Modbus TCP Primary Devices

The HMI works as the Modubs primary device and uses the Modbus TCP/IP protocol

for communication.

According to the Modbus TCP/IP protocal, the default port number is 502.

At present, the system supports the following types of data, as listed in the table

below:

Data Type Function Description

DI bit Input node. Read-only.

In the Modubs protocol, corresponding to:

Function number: 02 (Read the discrete input)

DO bit Output node. Read and write.

In the Modubs protocol, corresponding to:

Function number: 01 (Read the loop)

Function number: 15 (Write multiple loops)

AI short, ushort Input register. Read-only.

In the Modubs protocol, corresponding to:

Function number: 04 (Read the input register)

AO short, ushort Holding register. Read and write.

In the Modubs protocol, corresponding to:

Function number: 03 (Read the holding register)

Function number: 16 (Write multiple registers)

AI_BIT bit To obtain a certain bit of the AI data.

Communiation Mode: Same as that for the AI data, corresponding to Function Number

04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to obtain the third bit of the input register with the

address as 10 (Note: The bit number starts from 0 – the lowest bit), then you will need

to select the data type AI_BIT and set the data address as 10.3 while adding the

device data.

AO_BIT bit To read and write a certain bit of the AO data.

Communiation Mode: Same as that for the AO data, corresponding to Function Nmber

03 (Read the holding register) and Function Number 16 (Write multiple registers) in the

Modubs protocol.

Configuration Mode: If you want to read and write the third bit of the holding register

with the address as 10 (Note: The bit number starts from 0 – the lowest bit), then you

will need to select the data type AO_BIT and set the data address as 10.3 while

adding the device data.

AI_LONG1 long,ulong To resolute two AI data with continuous addresses as an int value.

Resolution Mode: The AI data with the lower address is resoluted as the higer 16 bits

of the int value, while the AI data with the higer address as the lower 16 bits. For

Data Type Function Description

example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the int value

0x1234.

Communiation Mode: Same as that for the AI data, corresponding to Function Number

04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the int value saved for the two data , AI10 and

AI11, then you will need to select the data type AI_LONG1 and set the data address as

10 while adding the device data.

AI_LONG2 long,ulong To resolute two AI data with continuous addresses as an int value.

Resolution Mode: The AI data with the lower address is resoluted as the lower 16 bits

of the int value, while the AI data with the higer address as the higher 16 bits. For

example, the two AI data, AI10=0x12 and AI11=0x34, will be resoluted as the int value

0x3412.

Communiation Mode: Same as that for the AI data, corresponding to Function Number

04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the int value saved for the two data , AI10 and

AI11, then you will need to select the data type AI_LONG2 and set the data address as

10 while adding the device data.

AO_LONG1 long,ulong To resolute two AO data with continuous addresses as an int value.

Resolution Mode: The AO data with the lower address is resoluted as the higer 16 bits

of the int value, while the AO data with the higer address as the lower 16 bits. For

example, the two AO data, AO10=0x12 and AO11=0x34, will be resoluted as the int

value 0x1234.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the int value saved for the two data ,

AO10 and AO11, then you will need to select the data type AO_LONG1 and set the

data address as 10 while adding the device data.

AO_LONG2 long,ulong To resolute two AO data with continuous addresses as an int value.

Resolution Mode: The AO data with the lower address is resoluted as the lower 16

bits of the int value, while the AO data with the higer address as the higer 16 bits. For

example, the two AO data, AO10=0x12 and AO11=0x34, will be resoluted as the int

value 0x3412.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Data Type Function Description

Configuration Mode: If you want to read and write the int value saved for the two data ,

AO10 and AO11, then you will need to select the data type AO_LONG2 and set the

data address as 10 while adding the device data.

AI_FLOAT1 float To resolute two AI data with continuous addresses as a float value.

Resolution Mode: The AI data with the lower address is resoluted as the higer 16 bits

of the float value, while the AI data with the higer address as the lower 16 bits.

Communiation Mode: Same as that for the AI data, corresponding to Function Number

04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the float value saved for the two data, AI10

and AI11, then you will need to select the data type AI_FLOAT1 and set the data

address as 10 while adding the device data.

AI_FLOAT2 float To resolute two AI data with continuous addresses as a float value.

Resolution Mode: The AI data with the lower address is resoluted as the lower 16 bits

of the float value, while the AI data with the higer address as the higer 16 bits.

Communiation Mode: Same as that for the AI data, corresponding to Function Number

04 (Read the input register) in the Modubs protocol.

Configuration Mode: If you want to read the float value saved for the two data, AI10

and AI11, then you will need to select the data type AI_FLOAT2 and set the data

address as 10 while adding the device data.

AO_FLOAT

1

float To resolute two AO data with continuous addresses as a float value.

Resolution Mode: The AO data with the lower address is resoluted as the higer 16 bits

of the float value, while the AO data with the higer address as the lower 16 bits.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the float value saved for the two

data, AO10 and AO11, then you will need to select the data type AO_FLOAT1 and set

the data address as 10 while adding the device data.

AO_FLOAT

2

float To resolute two AO data with continuous addresses as a float value.

Resolution Mode: The AO data with the lower address is resoluted as the lower 16

bits of the float value, while the AO data with the higer address as the higer 16 bits.

Communiation Mode: Same as that for the AO data, corresponding to Function

Number 03 (Read the holding register) and Function Number 16 (Write multiple

registers) in the Modubs protocol.

Configuration Mode: If you want to read and write the float value saved for the two

data, AO10 and AO11, then you will need to select the data type AO_FLOAT2 and set

Data Type Function Description

the data address as 10 while adding the device data.

11.3.3.3 Siemens S7 300 Series PLC (Using the Hilscher Netlink - MPI Adaptor)

At present, the system supports the following types of data, as listed in the table

below:

Data Type Address Format Description

I bit DDD.O Digital input

Q bit DDD.O Digital output

M bit DDD.O Mark bit of the internal register

IB char,uchar DDDD Digital input (byte)

QB char,uchar DDDD Digital output (byte)

MB char,uchar DDDD Mark bit of the internal register (byte)

C short,ushort DDDD Counter register

T short,ushort DDDD Timer register

DBX bit DDDD.O Data block (bit)

DBB char,uchar DDDD Data block (byte)

DBW short,ushort DDDD Data block (word)

DBD long, ulong,float DDDD Data block (double word)

Note: D stands for the decimal system, and O stands for the octal system.

11.3.4 TCP Network Servers

11.3.4.1 Modbus TCP Slave Devices

The HMI works as the Modubs slave device and uses the Modbus TCP/IP protocol

for communication. According to the Modbus TCP/IP protocol, the default port is 502.

At present, the system supports the following types of data, as listed in the table

below:

Data Type Function Description

DI bit Input node. Read-only.

In the Modubs protocol, corresponding to:

Function number: 02 (Read the discrete input)

DO bit Output node. Read and write.

In the Modubs protocol, corresponding to:

Data Type Function Description

Function number: 01 (Read the loop)

Function number: 5 (Write a single loop)

Function number: 15 (Write multiple loops)

AI short, ushort Input register. Read-only.

In the Modubs protocol, corresponding to:

Function number: 04 (Read the input register)

AO short, ushort Holding register. Read and write.

In the Modubs protocol, corresponding to:

Function number: 03 (Read the holding register)

Function number: 6 (Write a single register)

Function number: 16 (Write multiple registers)

Note:

When working as the Modbus slave device, the HMI receives requests from the

primary station, carries out operations accordingly, and then responds to the primary

station. The operation mode of the Modubs slave device can be described as “Passively

Triggered”. Therefore, the parameters Data Group and Access Mode, and the option

Disable the data for the data configuration are meaningless, and thus are ignored by the

system.

11.4 System Variables for Device Configuration

Database Name Variable Name Data Type Default Value Description

system IoEnable bit 1 The available values are described as

follows:

• 1: Device management function

enabled

• 0: Device management function

disabled

hmi_system_set link_timeout_wnd_on bit 1 The available values are described as

follows:

• 1: The system automatically

displays the communication

timeout prompt window when

communication timeout occurs.

• 0: The system does not display

the timeout prompt window

when communiation timeout

occurs.

link_timeout_wnd_x short -1 Defines the value of the X-axis in the top

left corner of the communication timeout

prompt window.

link_timeout_wnd_y Short -1 Defines the value of the Y-axis in the top

left corner of the communication timeout

prompt window.

11.5 Example for Device Configuration

Take the Siemens S7-200 series PLC for example to explain how to configure a

device.

Suppose that the S7-200 PLC application involoves the following variables: I0.0, I0.1,

I0.2, I0.3, Q0.0, Q0.1, Q0.2, Q0.3, M10.1, M10.2, M10.3, and M10.4, and that all these

data requires data exchange with the HMI.

In this case, do the device configuration as follows:

1. Under the Real-Time Database node in the Project Manager window, create a

database named global, and then create three data groups IO, DO, and PARAM under

the global node, as shown in Figure 11.23.

Figure 11.23

Under the three added data groups, add real-time database data, as described

below:

5) For the IO data group, add the data Input0, Input1, Input2, and Input3.

Take Input0 for example. Do the data configuration as shown in Figure 11.24 and

Figure 11.25.

Figure 11.24

Figure 11.25

6) For the DO data group, add the data Output0, Output1, Output2, and Output3.

Take Output0 for example. Do the data configuration as shown in Figure 11.26

and Figure 11.27.

Figure 11.26

Figure 11.27

7) For the PARAM data group, add the data Var1, Var2, Var3, and Var4.

Take Var1 for example. Do the data configuration as shown in Figure 11.28 and

Figure 11.29.

Figure 11.28

Figure 11.29

2. Under the Device Configuration node, add a communication link link1 of the

Serial Port type. Configure the link parameters as follows:

Baud Rate: 9600; Data Bit: 8; Stop Bit: 1; Parity Check: Even

After configuring the link, add a device for the link, as shown in Figure 11.30.

Figure 11.30

The parameters for device configuration in Figure 11.30 are described as follows:

• Device Name: plc_test (The device name can be defined to anything of your

choice.)

• Device Address: S7-200 (The default device address is 2.)

• Device Driver Application: Select Siemens S7 200 Series PLC. This setting is

very crucial. Make sure that all the settings satisfy your needs. However,

considering that the S7-200 series all use the PPI communication protocol,

Siemens S7 200 Series PLC is selected for all S7-200 PLCs as the driver

application.

3. Add data for device communication. The actual types of data which might exist in

the PLC can all be associated to the variables in the real-time database.

1) PLC input register I: Associate the data from I0.0 to I0.3 individually to the

real-time database data from global.Input0 to global.Input3. Take I0.0 for example.

Configure thee data as shown in Figure 11.31.

Figure 11.31

2) PLC input register Q: Associate the data from Q0.0 to Q0.3 individually to the

real-time database data from global.Output0 to global.Output3. Take Q0.0 for example.

Configure the data as shown in Figure 11.32.

Figure 11.32

3) PLC bit register M: Associate the data from M10.1 to M10.4 individually to the

real-time database data from global.Var1 to global.Var4. Take M10.1 for example.

Configure the data as shown in Figure 11.33.

Figure 11.33

The configured communication data will be listed as shown in Figure 11.34.

Figure 11.34

Chapter 12 Development of Control
Function Blocks

12.1 Overview

For the monitoring system, the monitoring hardware devices are compulsory. These

devices can be PLCs, DCSs, intelligent instruments or PC-based industrial computers

(referred to as PC-Based devices hereinafter). They can also be the currently popular

Fieldbus Systems. In the control system, these devices take the leading roles for control;

the input and output of process signals can only be transferred to the field devices through

these hardware devices.

For the existing control systems, there are two methods of implementing control

policies, as described below:

• Method 1

The PLCs, DCSs, and intelligent instruments all have internal ready-to-use control

algorithms. The preset control solutions and policies can be implemented after

some configuration is done.

However, this method has its disadvantages, as listed below:

o Firstly, the internal control policies of these control devices are hard to be

modified.

Some control policies are even not allowed to be modified during the system

operation.

o Secondly, the control capabilities of these control devices are very limited.

They are only capable of implementing some simple and routine control.

For example, the logic operations of DCSs are of low speed, and the control

algorithms of PLCs are of limited varieties. These disadvantages seriously

restrict the device performance to be brought into full play.

• Method 2

These control devices can communicate conveniently with PCs, and use the

various algorithms provided by some function blocks of the configuration software

on the PC. This makes up for the inabilities of the computing and control

capabilities of these control devices.

At present, none of the HMIs out there in the market are capable of solving the issues

mentioned above. However, EASY manages to embed complicated control policies into

interfaces of the HMI, and thus easily implement complicated control functions.

12.2 Basic Concepts

In the EASY applications, the main control functions are implemented through scripts

or ladder diagrams. Besides, EASY provides various control function blocks. Each

function block stands for an operation, algorighm, or variable (which are the basic

execution elements of policies), similar to an integrated circuit block which has multiple

inputs and outputs. Each input or output pin has a unique name, and the meaning and

value range of each pin vary according to the type of the function block.

12.3 Architecture

Basic function blocks can be called repeatedly and are assigned with a name with

each call. The sequence in which basic function blocks are executed is decided by how

they are sorted under the Function Block node. In general, they are executed from top to

bottom.

There are five categories of basic function blocks:

• Variable Function Blocks: provide variable links for the other function blocks.

• Mathematical Operation Function Blocks: carry out mathematical operations

between various variables.

• Programming Control Function Blocks: carry out jumps between policies.

• Logic Function Blocks: carry out logic control and logic operations.

• Control Algorithm Function Blocks: carry out operations and controls according to

standard control algorithms.

All input and output data for function blocks come from the real-time database. All you

need to do is just to associate the input and output variables of each function block to the

real-time database data. The function blocks are executed periodically, which ensures the

control reliability.

A complete function block is mainly composed of the following parts:

• Function Block Name: specifies the name of the function block; can be

user-defined.

• Function Block Type: specifies the type of the function block, such as Arithmetics,

Comparison, and Logic.

• Function Block Sub-Type: specifies the sub-type of the function block; for example,

the arithmetic function block has four sub-types, Addition, Subtraction,

Multiplication, and Division.

• Function Block Allow Variable: refers to a bit data in the real-time database. When

the value of the variable is 1, the function block will be executed; when the value is

0, the function block will not be executed.

• Function block input and output variables: A function block may have multiple

input and output variables. The function block is executed as follows: The data is

obtained from the input variable and operated according to the type of the function

block, and the calculated result is then saved to the output variable.

For example, the arithmetic addition function block has two input variables IN1

and IN2, and one output variable OUT. The function block is executed as this:

OUT=IN1+IN2, where IN1 and IN2 each can be associated with a real-time data,

and OUT can be associated with another real-time data. After the function block is

executed, the value of the real-time data associated with OUT equals to the sum

of the two real-time data associated with IN1 and IN2.

12.4 Operational Instructions

12.4.1 Adding a Function Block

To add a control block, do as follows:

1) Select Function Block on the left side of the Project Manager window and

right-click on it.

You will see a right-click menu as shown in Figure 12.1.

Figure 12.1

2) Select Add a Function Block, and you will see a dialog box as shown in Figure

12.2.

Figure 12.2

The configuration parameters in Figure 12.2 are described as follows:
 Function Block Name: defines the name of the function block.
 Function Block Type: defines the specific type of the function block, such as

Arithmetic, Comparison, and Logic.
 Function Block Sub-Type: defines the sub-type of the function block; for

example, the Arithmetic Function Block has four sub-types, which are Addition,
Subtraction, Multiplication, and Division.

 Allow Variable: refers to a bit data in the real-time database. When the value of
this variable is 1, the function block will be executed; when the value is 0, the
function block will not be executed.

After adding a function block, select it in the navigator on the left side of the Project

Manager window, and you will see a list of data displayed on the right side of the window,

as shown in Figure 12.3.

Figure 12.3

Right-click on the parameter IN1, and you will see a right-click menu as shown in

Figure 12.4.

Figure 12.4

Select Modify from the right-click menu or double-click on the parameter IN1, and

you will see a dialog box as shown in Figure 12.5.

Figure 12.5

Click on the icon on the right side, select the associated data fromm the real-time

database, ad then click on OK to save the configuration.

You can configure the parameters IN2 and OUT in the same way as the parameter

IN1.

12.4.2 Deleting a Function Block

To delete a function block, do as follows:

1) Select the added function block on the left side of the Project Manager window,

and right-click on it.

You will see a right-click menu as shown in Figure 12.6.

Figure 12.6

2) Select Delete a Function Block, and you will see a dialog box as shwon in

Figure 12.7.

Figure 12.7

3) Click on OK.

The selected function block will be deleted.

12.4.3 Configuring a Function Block

To configure a function block, do as follows:

1) Select the added function block on the left side of the Project Manager window,

and right-click on it.

You will see a right-click menu as shown in Figure 12.8.

Figure 12.8

2) Select Configure, and you will see a dialog box as shown in Figure 12.9.

Figure 12.9

3) After you do all the configuration, click on OK to save the settings.

12.5 Input and Output Instructions

12.5.1 Arithmetic Function Blocks

12.5.1.1 Addition

Function: To add two operands; for example, OUT = IN1 + IN2.

Input:

Input Data Type Description

IN1
All data types except

string
Summand of addition

IN2
All data types except

string
Addend of addition

Output:

Output Data Type Description

OUT
All data types except

string
Sum of two operands

12.5.1.2 Subtraction

Function: To subtract one one operand from aother; for example, OUT = IN1 - IN2.

Input:

Input Data Type Description

IN1
All data types except

string

Minuend of

subtraction

IN2
All data types except

string

Subtrahend of

subtraction

Output:

Output Data Type Description

OUT
All data types except

string

Difference between

two operands

12.5.1.3 Multiplication

Function: To multiply one operand by another; for examle, OUT = IN1 × IN2.

Input:

Input Data Type Description

IN1
All data types except

string

Multiplicand of

multiplication

IN2
All data types except

string

Multiplicator of

multiplication

Output:

Output Data Type Description

OUT
All data types except

string

Product of two

operands

12.5.1.4 Division

Function: To divide one operand by another; for example, OUT = IN1 / IN2.

Input:

Input Data Type Description

IN1
All data types except

string
Dividend of division

IN2
All data types except

string
Divisor of division

Output:

Output Data Type Description

OUT
All data types except

string

Quotient of two

operands

12.5.2 Comparison Function Blocks

12.5.2.1 Greater Than

Function: To carry out the Greater Than operation between two operands.

Input:

Input Data Type Description

IN1
All data types except

string
Comparand 1

IN2
All data types except

string
Comparand 2

Output:

Output Data Type Description

OUT Bit data only

If IN1 is greater than

IN2, then OUT = 1;

otherwise, OUT = 0.

12.5.2.2 Equal To Or Greater Than

Function: To carry out the Equal To Or Greater Than operation between two operands.

Input:

Input Data Type Description

IN1
All data types except

string
Comparand 1

IN2
All data types except

string
Comparand 2

Output:

Output Data Type Description

OUT Bit data only

If IN1 is equal to or

greater than IN2, then

OUT = 1; otherwise,

OUT = 0.

12.5.2.3 Less Than

Function: To carry out the Less Than operation between two operands.

Input:

Input Data Type Description

IN1
All data types except

string
Comparand 1

IN2
All data types except

string
Comparand 2

Output:

Output Data Type Description

OUT Bit data only

If IN1 is less than IN2,

then OUT = 1;

otherwise, OUT = 0.

12.5.2.4 Equal To Or Less Than

Function: To carry out the Equal To Or Less Than operation between two operands.

Input:

Input Data Type Description

IN1
All data types except

string
Comparand 1

IN2
All data types except

string
Comparand 2

Output:

Output Data Type Description

OUT Bit data only

If IN1 is equal to or less

than IN2, then OUT = 1;

otherwise, OUT = 0.

12.5.2.5 Equal To

Function: To carry out the Equal To operation between two operands.

Input:

Input Data Type Description

IN1
All data types except

string
Comparand 1

IN2
All data types except

string
Comparand 2

Output:

Output Data Type Description

OUT Bit data only

If IN1is equal to IN2,

then OUT = 1;

otherwise, OUT = 0.

12.5.2.6 Not Equal To

Function: To carry out the Not Equal To operation between two operands.

Input:

Input Data Type Description

IN1
All data types except

string
Comparand 1

IN2
All data types except

string
Comparand 2

Output:

Output Data Type Description

OUT Bit data only

If IN1 is not equal to IN2,

then OUT = 1;

otherwise, OUT = 0.

12.5.3 Type Conversion Function Blocks

Function: OUT = IN

If the OUT and IN data are of the same type, the data value will be copied directly;

otherwise, the data type conversion will be required between the OUT and IN data. For

example, to convert the int data to the float data.

Input:

Input Data Type Description

Input Data Type Description

IN1 All data types

Output:

Output Data Type Description

OUT All data types

Note: The data type conversion might affect the data accuracy; for example, when a float

data is converted to an int data. For the string data, copying among the string data is

allowed. However, it is not allowed to convert the string data to other types of data; for

example, a string data cannot be converted to an int or float data.

12.5.4 Linear Conversion Function Blocks

Function: To implement the linear conversion between the input IN and the output OUT.

The data range for IN is MININ - MAXIN, and the corresponding data range for OUT is

MINOUT – MAXOUT.

Input:

Input Data Type Description

IN
All data types except

string

MININ
All data types except

string

Minimum value

allowed for input

MAXIN

All data types except

string

Maximum value

allowed for input

MINOUT

All data types except

string

Minimum value

allowed for output

MAXOUT

All data types except

string

Maximum value

allowed for output

Output:

Output Data Type Description

OUT
All data types except

string

OUT = (IN – MININ)/

(MAXIN-MININ)*(MAXOUT-MINOUT) +

MINOUT

12.5.5 Logic Function Blocks

12.5.5.1 Logical AND

Function: To carry out the Logical AND operation between two operands.

Input:

Input Data Type Description

IN1 Bit data only

IN2 Bit data only

Output:

Output Data Type Description

OUT Bit data only
Result of the Logical

AND operation

12.5.5.2 Logical OR

Function: To carry out the Logical OR operation between two operands.

Input:

Input Data Type Description

IN1 Bit data only

IN2 Bit data only

Output:

Output Data Type Description

OUT Bit data only
Result of the Logical OR

operation

12.5.5.3 Logical Exclusive OR

Function: To carry out the Logical Exclsive OR operation between two operands.

Input:

Input Data Type Description

IN1 Bit data only

IN2 Bit data only

Output:

Output Data Type Description

OUT Bit data only
Result of the Logical

Exclusive OR operation

12.5.5.4 Logical NOT

Function: To carry out the Logical NOT operation between two operands.

Input:

Input Data Type Description

IN1 Bit data only

Output:

Output Data Type Description

OUT Bit data only
Result of the Logical

NOT operation

12.5.6 PID Function Blocks

Regarding process control, the PID controller (also known as PID regulators), which

controls according to the percentage of deviation (P), Integral (I) and differential (D)

control, is the most widely used as a automatic controller. It has the following advantages:

• Simple working principles

• Easy to realize

• Widely applicable

• Control parameters independent of each other

• Selection of relatively simple parameters

Besides, in theory the PID controller is proved the best control system for the typical

process control objects, First-Order Plus Dead-Time and Second-Order Plus Dead-Time.

During the past 20 plus years, there came out some complicated control algorithms which

can only be realized on the computer. However, at present, the PID controller is still the

most widely used control algorithm even in process computer control.

Input:

Input Data Type Description

SP
All data types except

string
Setpoint

PV
All data types except

string
Process variable

AV
All data types except

string

Output value of the PID

algorithm

MAXOUT
All data types except

string

Maximum value allowed

for the output

MINOUT
All data types except

string

Minimum value allowed

for the output

MV
All data types except

string

Output value of the

manipulated variable.

When AM=1, then

AV=MV.

KP
All data types except

string
Proportional coefficient

TI
All data types except

string

Integral time constant

(unit: s)

TD
All data types except

string

Derivative time constant

(unit: s)

IS
All data types except

string

Deviation integral value

(namely, cumulative

deviation)

AM Bit variables

Manual manipulation

flag.

• When AM=1, the

manipulation will be

manual.

• When AM=0, the

manipulation will be

automatic.

PN: Bit variables

• When PN=1, it

indicates the positive

action.

• When PN=0, it

indicates the

negative action.

Output:

Output Data Type Description

AV
All data types except

string
Output value

IS

All data types except

string

Deviation integral value

(namely, cumulative

deviation)

Execution Function: To execute the PID algorithm.

Note: The PID algorithm provides bumpless switch between the automatic and manual

PID controls. Some variables, such as AV and MV, are not only input variables but also

output variables.

The PID controller carries out the PID algorithm through the setpoint (SP) and the

process variable. The PID control loop works in two modes, MAN and AUT. In the MAN

mode, the PID control loop works as a manual regulator; in the AUT mode, the PID control

loop carries out the PID algorithm automatically. The SP can be defined by the operator.

When the PID control loop works in the MAN mode, the SP picks up the automatic

tracking function equal to PV, facilitating the bumpless switch from the MAN mode to the

AUT mode.

1. Calculate the PID control output

Proportional Term = Proportion * (Current Deviation – Last Deviation)

Integral Term = Proportion * Deviation * Collection Cycle / integral time constant

Differential Term = Proportion * differentiating time constant * (Current Deviation - 2*Last

Deviation + Last Two Deviations)/Collection Cycle.

• If it is a positive action, then Output = Last Output + Proportional Term + Integral Term

+ Differential Term.

• If it is a negative action, then Output = Last Output - Proportional Term - Integral Term

- Differential Term.

Judge whether the output and deviation exceed the preset limit as follows. If so,

process it accordingly.

2. Select PID parameters

The setting of the parameters for the digital PID regulator is similar to that for the

analog PID regulator. Decide what parameters to select for the regulator based on the

requirements of process on the control performance. The impact of each parameter on the

system performance is briefly described below:

• Impact of Proportional Coefficient (P) on the System Performance

With the increase of the proportional coefficient, the system reacts more sensitively

and with faster speed and less steady-state error. However, too much increase of the

P value will result in more number of vibrations and longer regulating time.

If the P value is too big, the system will become unstable; if it is too small, the system

performance will become slow.

The P value can be negative, mainly determined by the actuator, sensor, and the

characteristics of the conrol object. If the P value has an incorrect symbol, the status

of the object (indicated by the PV value) will become further and further away from the

target control state (indicated by the SP value). In this case, you will need to change

the symbol of the P value to the opposite.

• Impact of Integral Control on the System Performance

The integral control will reduce the system stability. The smaller the I value is, the

stronger the integral control, and then the unstabler the system. However, it eliminates

the steady-state error and enhances the system cotrol accuracy.

• Impact of Differential Control on the System Performance

The differential control improves the dynamic characteristics. However, the bigger the

D value is, the bigger the overshoot, and thus the shorter the regulating time; the

smaller the D value, the bigger the overshoot as well, and the longer the regulating

time. Only when the D value is appropriate, the overshoot is small, and thus reducing

the regulating tme.

12.5.7 First-Order Model Function Blocks

Function: To configure a model object for the first-order system.

Input:

Input Data Type Description

Input Data Type Description

IN
All data types except

string
Input value

KP
All data types except

string
Amplification coefficient

T
All data types except

string
Time constant (unit: s)

MAXOUT
All data types except

string
Maximum output value

MINOUT
All data types except

string
Minimum output value

Output:

Output Data Type Description

OUT
All data types except

string
Output value

12.5.8 Differential Function Blocks

Function: To realize the differential function. The differential of OUT equals to that of IN.

Input:

Input Data Type Description

IN
All data types except

string
Input variable

Output:

Output Data Type Description

OUT
All data types except

string
Output value

12.5.9 Integral Function Blocks

Function: To realize the integral function. The integral of OUT equals to that of IN.

Input:

Input Data Type Description

IN
All data types except

string
Input variable

SW Int variable

Defines how the integral function

works, as follows:

• When SW=0, the integral result

is reset, namely, OUT=0.

• When SW=1, the integral

becomes cumulative.

• When SW=2, the integral

function stops while the integral

result is stored.

Output:

Output Data Type Description

OUT
All data types except

string
Output value

12.6 System Variables for Function Blocks

Database
Name

Variable Name
Data
Type

Default
Value

Description

FbdEnable bit 1

• When the variable value
is 1, the function block is
enabled.

• When the variable value
is 0, the function block is
disabled. In other words,
none of the configured
function blocks will be
executed.

FbdCycleTime ulong 100
Defines the cycle in which the
function blocks are executed
(unit: ms).

system

FbdHeartbeat bit

Defines the heartbeat of the
function blocks during the
operation.
The value of this variable

Database
Name

Variable Name
Data
Type

Default
Value

Description

switches between 0 and 1
repeatedly during the
operation of the function
blocks. The value switches
once all function blocks are
executed.

Chapter 13 Ladder Diagram Programming

13.1 Overview

To better satisfy the needs of industrial control, the EASY HMI integrates as well the

soft PLC function besides the cofiguration functions provided by the commonly-used

configuration software. With the soft PLC function, the EASY HMI is capable of realizing

some functions which can only be implemented on the PLC. Therefore, in some cases,

the EASY HMI can replace the PLC; for example, you can directly connect to IO modules

and implement the control over these modules completely from the HMI.

The soft PLC function of the EASY HMI is implemented through the ladder diagram

programming, which is widely-used in the PLC industry at present. Because of this, if you

are an engineer or technician familiar with the PLC, you can start working with the EASY

HMI right away without any special technical training.

During the ladder diagram programming, you can not only use directly the various

ladder diagram components provided by the system, but also access all the data in the

real-tiime database. Therefore, it can be concluded that the EASY HMI is more preferable

compared with the traditional PLC regarding rapidly configuring powerful control projects.

13.2 Creating a Ladder Diagram Program

13.2.1 Overview

To create a ladder diagram program, do as follows:

Double-click on the Ladder Diagram node in the navigator on the left side of the

Project Manager window.

You will see the Ladder Diagram Editor window as shown in Figure 13.1.

Figure 13.1

The ladder diagram programming is organized hierachically in two levels, program

segments and program blocks. A ladder diagram program can be composed of one or

more program segments, and a program segment can be composed of one or more

program blocks. You can realize the ladder diagram logic in each program block.

The ladder diagram is designed to be composed of several program segments,

because in this way it allows you to specify an operational variable for each program

segment to control whether to run this program segment.

The following sections describe in details how to create program segments and

program blocks.

13.2.2 Create a Program Segment

To create a program segment, do as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, select

Program on the left side and right-click on it.

You will see a right-click menu as shown in Figure 13.2.

Figure 13.2

2) Select Create a Program Segment, and you will see a dialog box as shown

in Figure 13.3.

Figure 13.3

The parameters in Figure 13.3 are described as follows:
 Program Segment Name: defines the name of the program segment to be

created.
 Operational Variable: defines whether to run this program segment.

This operational variable is an int variable. When the value is 0, the program
segment will not run; when the value is not 0, the program segment will run. If no
operational variable is defined, then the program segment will run by default.

13.2.3 Creating a Program Block

After you create a program segment, you can add program blocks for it as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, select the

program segment for which you want to add a program block, and right-click

on it.

You will see a right-click men as shown in Figure 13.4.

Figure 13.4

2) Select Add a Program Block, and you will see a dialog box as shown in

Figure 13.5.

Figure 13.5

3) Set the name for the program block, and click on OK.

13.2.4 Deleting a Program Segment

To delete an existing program segment, do as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, select the

program segment to be deleted on the left side of the window, and right-click

on it.

You will see a right-click menu as shown in Figure 13.6.

Figure 13.6

2) Select Delete a Program Segment, and the selected program segment will

be deleted.

13.2.5 Deleting a Program Block

To delete an existing program block, do as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, select the

program block to be deleted on the left side of the window, and right-click on

it.

You will see a right-click menu as shown in Figure 13.7.

Figure 13.7

2) Select Delete a Program Block, and the selected program block will be

deleted.

13.2.6 Moving a Program Block

Program blocks in the ladder diagram are executed from top to bottom in the same

sequence as they are sorted under the Program Segment node. You can change the

execution sequence by dragging the program block to a different location under the

Program Segment node.

13.2.6.1 To the End

You can move a program block to the most bottom of the list under the Program

Segment node.

Do as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, select the

program block to be moved on the left side of the window, and right-click on it.

2) On the right-click menu displayed, select Move to The End.

13.2.6.2 To the Beginning

You can move a program block to the beginning of the list under the Program

Segment node.

Do as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, select the

program block to be moved on the left side of the window, and right-click on it.

2) On the right-click menu displayed, select Move to The Beginning.

13.2.6.3 To the Previous Layer

You can move a program block to the previous layer within the same Program

Segment node.

Do as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, select the

program block to be moved on the left side of the window, and right-click on it.

2) On the right-click menu displayed, select Move to The Previous Layer.

13.2.6.4 To the Next Layer

You can move a program block to the next layer within the same Program Segment

node.

Do as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, select the

program block to be moved on the left side of the window, and right-click on it.

2) On the right-click menu displayed, select Move to The Next Layer.

13.2.7 Editting a Ladder Diagram Program

You can edit the ladder dialgram programming for a defined program block.

Do as follows:

1) In the Ladder Diagram Editor window as shown in Figure 13.1, double-click

on the program block to be editted on the left side of the window.

You can see a rectanglar grid on the right side of the window.

2) Drag and put ladder diagram components inside the grid according to your

needs.

Each component takes only one column. Some components can spread

across a few rows according to the needs.

13.2.7.1 Adding a Component

On the right side of the Ladder Diagram Editor window as shown in Figure 13.1 is

located a tool set, which lists all ladder diagram components supported by EASY, as

shown in Figure 13.8.

Figure 13.8

To add a component, do as follows:

1) Select the component control from the tool set.

2) Drag and put this component in the appropriate grid.

Depending on the function of the component, some components can only be

placed in the last column of the grid (for example, open loops), while some

others are not allowed to be placed in the last column of the grid (for example,

normally open contacts).

Note: After adding a component, you must configure the properties of this component

before using it.

13.2.7.2 Editting a Component

After adding a component, you need to edit the properties of this component.

Do as follows:

Double-click on the component for which you want to edit the properties or right-click

on the component, and then select Properties, as shown in Figure 13.9.

Figure 13.9

The Property Setting dialog box displayed varies from component to component.

For normally open contacts, the Property Setting dialog box is as shown in Figure 13.10.

Figure 13.10

13.2.7.3 Deleting a Component

To delete a component, do as follows:

1) Select the component to be deleted.

2) Press the DEL on the keyboard, or right-click on the component and select

Delete, as shown in Figure 13.11.

Figure 13.11

13.2.7.4 Inserting a Row

You can insert a new row before a selected row.

Do as follows:

1) Select a row and then right-click on it.

2) Select Insert a Row on the right-click menu.

To insert a row before the last row, you need to select Add a Row.

13.2.7.5 Deleting a Row

You can select a row and delete it, on the condition that the selected row does not

have any components attached.

To delete a row, do as follows:

1) Select a row and right-click on it.

2) Select Delete a Row on the right-click menu.

13.2.7.6 Inserting a Column

You can insert a column before the selected column.

Do as follows:

1) Select a column ad right-click on it.

2) Select Insert a Column.

13.2.7.7 Deleting a Column

You can select a column and delete it, on the condition that the selected column does

not have components attached.

Do as follows:

1) Select a column and right-click on it.

2) Select Delete a Column on the right-click menu.

13.2.7.8 Adding a Row at the End

You can add a row before the last row.

Do as follows:

1) Right-click anywhere in the grid.

2) Select Add a Row on the right-click menu.

13.3 Components in the Ladder Diagram

13.3.1 Connecting Line

The connecting line is for connecting components of the ladder diagram.

At present, the system has three types of connecting lines, as described below:

• Horizontal Lines : Horizontally connecting the components. These lines

occupy only one cell.

• Vertical Lines : Vertically connecting the components.

• Horizontal Connect-To Lines : Horizontally connecting the components. These

lines may occupy multiple cells, namely, all the cells between the current cursor

location and the next component.

13.3.2 Digital Input

Digital input components include four types, Normally Open Contacts , Normally

Closed Contacts , Rising Edges , Falling Edges . None of these four types of

components are allowed to be placed in the last column of the grid.

After you add a digital input component in the grid, double-click on the component to

configure the associated variables in the dialog box as shown in 13.12.

Figure 13.12

The functions of and instructions for these four types of components are described in

details in the table below.

Component Function Special Instruction

Normally

Open Contact

• When the value of the variable

to which this component is

associated is 0, the contact

state is 0.

• When the value of the

associated variable is non-0,

the contact state is 1, namely,

OUT=IN & VAL.

• If no associated variable is specified,

the output is always equal to the

input, namely, OUT=IN.

• If you set the associated variable to

the constant 1, the output is always

equal to the input, namely, OUT=IN.

• If you set the associated variable to

the constant 0, then the output is

always 0, namely, OUT=0.

Normally • When the value of the variable • If no associated variable is specified,

Closed

Contact

to which this component is

associated is 0, the contact

state is 1.

• When the value of the

associated variable is non-0,

the contact state is 0, namely,

OUT=IN & !VAL.

the output is always equal to the

opposite of the input, namely,

OUT=!IN.

• If you set the associated variable to

the constant 1, the output is always

0, namely, OUT=0.

• If you set the associated variable to

the constant 0, the output is always

equal to the input, namely, OUT=IN.

Rising Edge

When the value of the associated

variable changes from 0 to 1, the

contact state is 1; otherwise, the

contact state is 0, namely, OUT=IN

& VAL.

• If no associated variable is specified,

the output is 1 when the input

changes from 0 to 1, namely,

OUT=IN.

• If the associated variable is set to

the constant 1 or 0, the output is

always 0, namely, OUT=0.

Falling Edge

When the value of the associated

variable changes from 1 to 0, the

contact state is 1; otherwise, the

contact state is 0, namely, OUT=IN

& VAL

• If no associated variable is specified,

the output is 1 when the input

changes from 1 to 0, namely,

OUT=IN.

• If the associated variable is set to

the constant 1 or 0, the output is

always 0, namely, OUT=0.

(Note: In the table above, IN stands for the component input, VAL for the value of the

associated variable, and OUT for the component output.)

13.3.3 Digital Output

Digital output components include four types, Open Loops , Closed Loops ,

Setting , and Reset . These four types of components are only allowed to be

placed in the last column of the grid.

After you add a digital output component in the grid, double-click on the component to

configure the associated variables in the dialog box as shown in Figure 13.13.

Figure 13.13

The functions of and instructions for these four types of components are described in

details in the table below.

Component Function

Open Loop

• When the loop input is 0, the value of the varialbe to which the loop is

associated is 0.

• When the loop input is non-0, the value of the associated variable is 1.

Closed Loop

• When the loop input is 0, the value of the associated variable is 1.

• When the loop input is non-0, the value of the associated variable is 0.

Setting

• When the loop input is non-0, the value of the associated variable is 1.

• When the loop input is 0, the value of the associated variable remains the

same.

Reset

• When the loop input is non-0, the value of the associated variable is 0.

• When the loop input is 0, the value of the associated variable remains the

same.

13.3.4 Timer

The Timer component is not allowed to be placed in the last column of the grid.

After you add a Timer component, the Timer component will be displayed in a cell of

the grid, as shown in Figure 13.14.

Figure 13.14

I stands for Input. When the value of I is 1, the timer starts running; when the value of

I is 0, the timer stops.

D stands for Done, which means the preset time for starting the timer is reached.

R stands for Running, which means the timer is running.

The functions of the timer are described as follows:

• When the value of I is 1, the timer starts running. During the timing period, the

value of D is 0, and the value of R is 1. Once the timing period runs out, the value

of D becomes 1, and the value of R becomes 0.

• When the value of I is 0, the timer stops running. In this case, the status of the

timer, whether it is Not Started, Started, or Stopped, makes no difference. The

values of both D and R are 0 as long as the value of I is 0.

Double-click on the Timer component, and you can configure its properties in the

dialog box as shown in Figure 13.15.

Figure 13.15

The configuration parameters in Figure 13.15 are described as follows:
 Initial Time Variable: defines the time when the timer starts running.

You can either enter an int constant, or associate it to a data in the real-time
database.

 Runtime Variable: reflects the running of the timer.
 If the timer is an incremental timer, you can observe that the value of this

variable increases gradually from 0 to the value defined for Initial Time
Variable during the running of the timer. The timer stops running once the
value defined for Initial Time Variable is reached.

 If the timer is a decremental timer, you can observe that the value of this
variable decreases gradually from the value defined for Initial Time
Variable to 0. The timer stops running once the value reaches 0. You do not
need to specify this variable if you do not need to know the running status of
the timer.

 Type: Two types are available for selection, Incremental and Decremental. For
more details, see the description for Running Time Variable.

13.3.5 Single-Shot Trigger

Single-shot triggers are not allowed to be placed in the last column of the grid.

After you add a single-shot trigger component, the component will be shown in a cell

of the grid, as shown in Figure 13.16.

Figure 13.16

I stands for the input of the single-shot trigger. When the value of I is 1, the

single-shot trigger starts running; when the value is 0, the trigger stops.

R stands for Running, which means the single-shot trigger is running.

The functions of the single-shot trigger are described as follows:

1. At the beginning of the operation of the ladder diagram, the single-shot trigger

has not started running yet, and thus the value of R is 0.

2. During the operation of the ladder diagram, the single-shot trigger starts

running when a rising edge (from 0 to 1) occurs to I, and the value of R

becomes 1. The trigger will keep running until the preset running time runs

out, regardless of the changes for I. Once the preset running time runs out,

the value of R becomes 0.

3. When the operation of the single-shot trigger is complete, the single-shot

trigger will start again when a rising edge (from 0 to 1) occurs to I, and step 2

will be repeated.

Double-click on the single-shot trigger component, and you can configure its

properties in the dialog box as shown in Figure 13.17.

Figure 13.17

The configuration parameters in Figure 13.17 are described as follows:
 Initial Time Variable: defines the time when the single-shot trigger starts running.

You can either enter an Int constant, or associate it to a data in the real-time
database.

 Runtime Variable: reflects the running of the single-shot trigger.
During the running of the single-shot trigger, you can observe that the value of
this variable increases gradually from 0 to the value defined for Initial Time
Variable. The trigger stops running once the value defined for Initial Time
Variable is reached.
You do not need to specify this variable if you do not need to know the running
status of the single-shot trigger.

 Type: This parameter is meaningless to the single-shot trigger.

13.3.6 Comparison Components

Comparison components are not allowed to be placed in the last column of the

grid.

After you add a comparison component, double-click on it, and you can configure its

properties in the dialog box as shown in Figure 13.18.

Figure 13.18

The parameters in Figure 13.18 are described as follows:
 Expression Type: Two types of expressions are available, Int and Float.
 Expression: You can enter the expression for comparison or judgement.

Follow the rules below when forming an expression:
1. Use the following operators:

 >: for More Than
 <: for Less Than

 = or ==: for Equal To
 <>: for Not Equal To
 (and): for brackets

2. Do not use spaces in the expression.
3. You can include the variables from the real-time database in the expression,
following the reference rule Database Name.Real-Time Data Name. Please be
noted that the symbol $ is not included.
An example of the expression can be test1.int4<>((test1.int5+5)*3).

For comparison components, the output is 0 when the input is 0. When the input is 1,

the system will carry out the calculation according to the expression: if the result is TRUE,

the output is 1; otherwise, the output is 0.

13.3.7 Assignment Components

Assignment components are only allowed to be placed in the last column of the

grid. You can define the assignment operation for these components.

After you add an assignment component in the grid, double-click on it, and you can

configure its properties in the dialog box as shown in Figure 13.19.

Figure 13.19

The configuration parameters in Figure 13.19 are described as follows:
 Expression Type: Two types of expressions are available, Int and Float.
 Expression: defines the expression for assignment operation.

Follow the rules below when forming an expression:
1. Do not use spaces in the expression.
2. You can include the variables from the real-time database in the expression,
following the reference rule Database Name.Real-Time Data Name. Please be
noted that the symbol $ is not included.

An example of the expression can be test1.int6=100.

For assignment components, when the input is 0, the assignment operation will not

be carried out; when the input is 1, the assignment operation is carried out according to

the expression.

13.3.8 Function Block Components

Besides the basic ladder diagram components, EASY provides function block

components as well.

On the right side of the Ladder Diagram Editor window as shown in Figure 13.1,

click on the Function Block button in the tool set, and you can see a Function Block

List dialog box as shown in Figure 13.20.

Figure 13.20

As dislayed in Figure 13.20, function block components fall into seven categories

according to functions, including Arithmetics, Comparison, Conversion, Logical Qubit

Operation, Advanced Computing, Control Algorithm, and Timer. Each category is

composed of several components; for example, the Arithmetics category has components

such as Addition and Subtraction. To select a component, you just need to click on it and

then click on OK. And then you can drag and place it in your target cell of the grid.

After you add a function block component, you need to configure its properties. Take

the Addition component as an example. Double-click on the component, and you can see

a dialog box as shown in Figure 12.21.

Figure 13.21

To configure the parameters for the component properties, do as follows:

1) Select a parameter from the Function Block Parameter List in Figure 13.21.

The name of the selected parameter will be shown in the text box behind

Parameter Name.

2) In the Parameter Value text box, enter your specified value, or click on the

icon on the right side to select a data from the real-time database.

3) Click on the Settings button, and complete all the related settings.

4) Click on OK to save all the parameter settings.

13.3.8.1 Arithmetics

Arithmetics function blocks are composed of four types of components, including

Addition, Subtraction, Multiplication, and Division, which carry out specifically the addition,

subtraction, multiplication, and division operations. These components are only allowed to

be placed in the last column of the grid.

Take the Addition component for example. After you add an Addition component, the

component will be displayed in the grid as shown in Figure 13.22.

Figure 13.22

EN stands for Enable. Only when the value of EN is 1, the arithmetic operation of the

component will be executed; when the value of EN is 0, the operation will not be executed.

To configure the properties of the component, double-click on the component, and

you will see a dialog box as shown in Figure 13.23.

Figure 13.23

The parameters listed in Figure 13.23 are described as follows:
 IN1: the first operand of the arithmetic operation. The value of this parameter can

be one of the following:
 Int constant
 Float constant
 Data in the real-time database

 IN2: the second operand of the arithmetic operation. The value of this parameter
can be one of the following:

 Int constant
 Float constant
 Data in the real-time database

 OUT: the result of the arithmetic operation. It must be a data in the real-time
database. When the value of EN is 1, the arithmetic operation will be executed,
and the result will be saved into a data in the real-time database.

13.3.8.2 Comparison

Comparision function blocks are composed of six types of components, including

Greater Than, Equal To Or Greater Than, Less Than, Equal To Or Less Than, Equal To,

and Not Equal To. These components are not allowed to be placed in the last column of

the grid.

Take the Greater Than component for example. After you add a Greater Than

component, the component will be displayed in the grid, as shown in Figure 13.24.

Figure 13.24

EN stands for Enable. Only when the value of EN is 1, the comparison operation of

the component will be executed, and the output is set based on the comparison result.

When the value of EN is 0, the comparison operation will not be executed, and the output

is always 0.

After you add a comparison component, double-click on it, and you can configure its

properties in the dialog box as shown in Figure 13.25.

Figure 13.25

The confguration parameters in Figure 13.25 are described as follows:
 IN1: the first operand of the comparison operation. The value of this parameter

can be one of the following:

 Int constant
 Float constant
 Data in the real-time database

 IN2: the second operand of the comparison operation. The value of this
parameter can be one of the following:

 Int constant
 Float constant
 Data in the real-time database

13.3.8.3 Conversion

Conversion function blocks are composed of two types of components, Type

Conversion (Assignment) and Linear Conversion. These components are only allowed to

be placed in the last column of the grid.

13.3.8.3.1 Type Conversion (Assignment)

The Type Conversion (Assignment) component has two parameters, the input

parameter IN and the output parameter OUT. It works to convert the type of IN to the

same as that of OUT. If IN and OUT are of the same data type, then the data value can be

copies directly; otherwise, the data type conversion will be carried out between OUT and

IN, for example, type conversion from Int to Float.

For type conversion, pay attention to the following aspects:

• Type conversion might affect data accurary; for example, when converting a Float

data to an Int data.

• For String data, it is copying from the IN string to the OUT string.

• Type conversion is not allowed between a string data and a non-string data.

After you add a type conversion (assignment) component, the component will be

displayed in the grid as shown in Figure 13.26.

Figure 13.26

EN stands for Enable. Only when the value of EN is 1, the type conversion operation

will be executed; when the value of EN is 0, the type conversiion operation will not be

executed.

To configure the properties of the component, double-click on it, and you will see a

dialog box as shown in Figure 13.27.

Figure 13.27

The configuration parameters are described as follows:
 IN1: the data whose type is to be converted. The value of the parameter can be

of any data type.
 OUT: the result after type conversion. The value of this parameter must be a data

in the real-time database.

13.3.8.3.2 Linear Conversion

The Linear Conversion component has six parameters, which are IN, MININ, MAXIN,

MINOUT, MAXOUT, and OUT. It works to implement the linear conversion from IN to

OUT (the value range of IN is MININ to MAXIN, and the value range of OUT is MINOUT to

MAXOUT.

After you add a linear converstion component, the component will be displayed in the

grid as shown in Figure 13.28.

Figure 13.28

EN stands for Enable. Only when the value of EN is 1, the linear conversion operation

will be executed; when the value of EN is 0, the linear converstion operation will not be

executed.

To configure the properties of the component, double-click on it and you will see a

dialog box as shown in Figure 13.29.

Figure 13.29

The configuration parameters in Figure 13.29 are described as follows:
 IN: the data for which linear conversion is to be implemented. The value of this

parameter can be on of the following:
 Int constant
 Float constant
 Data in the real-time database

 MININ: the minimum value of the input range. The value of this parameter can be
one of the following:

 Int constant
 Float constant
 Data in the real-time database

 MAXIN: the maximum value of the input range. The value of this parameter can
be one of the following:

 Int constant
 Float constant
 Data in the real-time database

 MINOUT: the minimum value of the output range. The value of this parameter
can be one of the following:

 Int constant
 Float constant
 Data in the real-time database

 MAXOUT: the maximum value of the output range. The value of this parameter

can be one of the following:
 Int constant
 Float constant
 Data in the real-time database

 OUT: the result of the linear conversion. The value of this parameter must be a
data in the real-time database.

13.3.8.4 Logical Qubit Operation

Logical Qubit Operation function blocks are composed of four types of components,

including Logical AND, Logical OR, Logical Exclusive OR, and Logical NOT. They

correspond individually to four operations in the C language, which are Bitwise And,

Bitwise Or, Bitwise Xor, and Bitwise Not. See below for more details.

• Bitwise And (&): returns the bitwise and of the binary numbers of the two

operands involved in the operation.

You can get a 1 only when both binary digits at the same location of the binary

number are 1; otherwise, you will get a 0.

For example, “9&5” can be converted to “00001001 (the binary number of

9)&00000101 (the binary number of 5)”, and the operation result is “00000001

(the binary number of 1)”, namely, “9&5=1”.

• Bitwise Or (|): returns the bitwise or of the binary numbers of the two operands

involved in the operation.

You can get a 1 as long as one of the binary digits at the same location of the two

binary numbers is 1; otherwise, you will get a 0.

For example, “9|5” can be converted to “00001001 (the binary number of

9)|00000101 (the binary number of 5)”, and the operation result is “00001101 (the

binary number of 13)”, namely, “9|5=13”.

• Bitwise Xor (^): returns the bitwise Xor of the binary numbers of the two operands

involved in the operation.

You can get a 1 when the two binary digits at the same location of the binary

number are different from each other; otherwise, you will get a 0.

For example, “9^5” can be converted to “00001001 (the binary number of

9)^00000101 (the binary number of 5)”, and the operation result is “00001100 (the

binary number of 12)”, namely, “9^5=12”.

• Bitwise Not (~): returns the bitwise not of each binary digit of the binary number of

the operand involved in the operation. In other words, the binary digits which are

on will be turned off and those which are off will be turned on.

For example, “~9” can be converted to “~00001001 (the binary number of 9)”, and

the operation result is “11110110 (the binary number of 246)”, namely, “~9=246”.

These four types of components are only allowed to be placed in the last column of

the grid.

Take the Logical And component for example. After you add a logical AND

component, the component will be displayed in the grid as shown in Figure 13.30.

Figure 13.30

EN stands for Enable. Only when the value of EN is 1, the logical operation of the

component will be executed; when the value of EN is 0, the operation will not be executed.

To configure the properties of the component, double-click on it, and you will see a

dialog box as shown in Figure 13.31.

Figure 13.31

The configuration parameters in Figure 13.31 are described as follows:
 IN1: the first operand of the logical operation. The value of this parameter can be

one of the following:
 Int constant (If starting with 0x, it means the input is a hex data; for example,

0x1234.)
 Data in the real-time database

 IN2: the second operand of the logical operation. This parameter is invalid for the
Logical Not component. The value of this parameter can be one of the following:

 Int constant (If starting with 0x, it means the input is a hex data; for example,
0x1234.)

 Data in the real-time database
 OUT: the result of the logical operation. It must be a data in the real-time

database. When the value of EN is 1, the logical operation will be executed, and
the result is saved into a data in the real-time database.

13.3.8.5 Advanced Computing

Advanced Computing function blocks are composed of two types of components,

including Differential and Integral components. These components are only allowed to be

placed in the last column of the grid.

13.3.8.5.1 Differential Components

The differential component has two parameters, including the input parameter IN and

the output parameter OUT. It works to implement the differential function, namely, to make

the differential of OUT equals to that of IN.

After you add a differential component, the component will be displayed in the grid as

shown in Figure 13.32.

Figure 13.32

EN stands for Enable. Only when the value of EN is 1, the differential operation will

be executed; when the value of EN is 0, the differential operation will not be executed.

To configure the properties of the differential component, double-click on it and you

will see a dialog box as shown in Figure 13.33.

Figure 13.33

The configuration parameters in Figure 13.33 are described as follows:
 IN: the data for which the differential operation is to be implemented. The value

of this parameter must be a data in the real-time database.
 OUT: the result of the differential operation. The value of this parameter must be

a data in the real-time database.

13.3.8.5.2 Integral Components

The Integral component has three parameters, which are IN, OUT, and SW. It works

to implement the integral function, namely, to make the integral of OUT equal to that of IN.

After you add an integral component, the component will be displayed in the grid as

shown in Figure 13.34.

Figure 13.34

EN stands for Enable. Only when the value of EN is 1, the integral operation will be

executed; when the value of EN is 0, the integral operation will not be executed.

To configure the properties of the component, double-click on it, and you will see a

dialog box as shown in Figure 13.35.

Figure 13.35

The configuration parameters in Figure 13.35 are described as follows:
 IN: the data for which the integral operation is to be implemented. The value of

this parameter must be a data in the real-time database.
 OUT: the result of the integral operation. The value of this parameter must be a

data in the real-time database.
 SW: the integral mode. When SW=0, it means to reset the integral result, namely,

OUT=0. When SW=1, it means the integral becomes cumulative. When SW=2,
the integral function stops and the integral result is saved. The value of this
parameter can be one of the following:

 Int constant (0, 1, or 2)
 Data in the real-time database

13.3.8.6 Control Algorithm

Control Algorithm function blocks are composed of two type of components, including

PID Algorithm components and First-Order Model components. These components are

only allowed to be placed in the last column of the grid.

13.3.8.6.1 PID Algorithm Components

PID Algorithm components are used to implement the PID regulating function. For

details, see section 12.5.6 PID Function Blocks.

After you add a PID algorithm component, the component will be displayed in the grid

as shown in Figure 13.36.

Figure 13.36

EN stands for Enable. Only when the value of EN is 1, the PID regulating algorithm

will be executed; when the value of EN is 0, the PID regulating algorithm will not be

executed.

To configure the properties of the component, double-click on it, and you will see a

dialog box as shown in Figure 13.37.

Figure 13.37

The configuration parameters in Figure 13.37 are described as follows:
 SP: the setpoint. The value of this parameter must be the data in the real-time

database.
 PV: the process variable to be measured. The value of this parameter can be

one of the following:
 Int constant
 Float constant
 Data in the real-time database

 AV: the output value. The value of this parameter must be the data in the
real-time database.

 MAXOUT: the maximum value of the output. The value of this parameter can be

one of the following:
 Int constant
 Float constant
 Data in the real-time database

 MINOUT: the minimum value of the output. The value of this parameter can be
one of the following:

 Int constant
 Float constant
 Data in the real-time database

 MV: the manual output value. The value of this parameter must be the data in the
real-time database.

 KP: the proportional coefficient. The value of this parameter can be one of the
following:

 Int constant
 Float constant
 Data in the real-time database

 TI: the integral time constant. The value of this parameter can be one of the
following:

 Int constant
 Float constant
 Data in the real-time database

 TD: the differential time costant. The value of this parameter can be one of the
following:

 Int constant
 Float constant
 Data in the real-time database

 IS: the cumulative integral deviation. The value of this parameter must be the
data in the real-time database.

 AM: AM=1 indicates Manual, while AM=0 indictes Automatic. The value of this
parameter can either directly come from the input of the connecting line of the
ladder diagram, or can be configured in the Function Block Configuration
dialog box. If the connecting line in the ladder diagram has an input
corresponding to AM and the AM parameter is configured in the Function Block
Configuration dialog box as well, the system will take the input of the
connecting line in the ladder diagram as the value of AM. To configure the AM
parameter in the Function Block Configuration dialog box, the value of the AM
parameter can be one of the following:

 Int constant (0 or 1)
 Data in the real-time database

 PN: PN=1 indicates the positive action, while PN=0 indicates the negative action.
The value of this parameter can either directly come from the input of the
connecting line in the ladder diagram, or can be configured in the Function
Block Configuration dialog box. If the connecting line in the ladder diagram has
an input corresponding to PN and the PN parameter is configured in the

Function Block Configuration dialog box as well, the system will take the input
of the connecting line in the ladder diagram as the value of PN. To configure the
PN parameter in the Function Block Configuration dialog box, the value of the
PN parameter can be one of the following:

 Int constant (0 or 1)
 Data in the real-time database

13.3.8.6.2 First-Order Model Components

Function: to realize model objects of the first-order system.

After you add an iintegral component, the component will be displayed in the grid as

shown in Figure 13.38.

Figure 13.38

EN stands for Enable. Only when the value of EN is 1, the operation defined for the

first-order model object will be executed; when the value of EN is 0, the operation will not

be executed.

To configure the properties of the component, double-click on it, and you will see a

dialog box as shown in Figure 13.39.

Figure 13.39

The configuration parameters in Figure 13.39 are described as follows:
 IN: the input. The value of this parameter can be one of the following:

 Int constant
 Float constant
 Data in the real-time database

 OUT: the output. The value of this parameter must be a data in the real-time
database

 KP: the amplification coefficient. The value of this parameter can be one of the
following:

 Int constant
 Float constant
 Data in the real-time database

 MAXOUT: the maximum value of the output. The value of this parameter can be
one of the following:

 Int constant
 Float constant
 Data in the real-time database

 MINOUT: the minimum value of the output. The value of this parameter can be
one of the following:

 Int constant
 Float constant
 Data in the real-time database

 T: the time constant. The value of this parameter can be one of the following:
 Int constant
 Float constant
 Data in the real-time database

13.3.8.7 Timer

Timer function blocks are composed of five types of components, including Delay

Timer (Decremental), Delay Timer (Incremental), Single-Shot Trigger Timer, Cycle Timer

(Impulsive), and Cycle Timer (Square Wave). These components are not allowed to be

placed in the last column of the grid.

13.3.8.7.1 Delay Timer (Decremental)

See the description about the dcremental timer in section 13.3.4 Timer.

13.3.8.7.2 Delay Timer (Incremental)

See the description about the incremental timer in section 13.3.4 Timer.

13.3.8.7.3 Single-Shot Trigger Timer

Same as section 13.3.5 Single-Shot Trigger.

13.3.8.7.4 Cycle Timer (Impulsive)

After you add a Cycle Timer (Impulsive) component, the component will be displayed

in the grid as shown in Figure 13.40.

Figure 13.40

I stands for the input of the timer. When the value of I is 1, the timer will be started;

when the value of I is 0, the timer stops running.

The difference between Cycle Timer and Delay Timer is that the execution of Delay

Timer is only one time while Cycle Timer runs at interval, as described below:

• Delay Timer: starts running when the value of I becomes 1; however, it stops

immediately when the preset running time runs out, even though the value still

remains 1. To have Delay Timer start running again, you must set the vaue of I to 0

first and then change it to 1.

• Cycle Timer (Impulsive): is executed repeatedly at intervals. It starts running when

the value of I is 1. When the preset running time runs out, the system returns the

output 1 for the T end, which triggers the timer to restart counting and resets the

value of T to 0.

Therefore, it can be understood that the system generates an impulse for Cycle Timer

(Impulsive) at a specified interval. Thus, Cycle Timer (Impulsive) is suitable for the

operations to be implemented at a certain interval.

Cycle Timer (Impulsive) works as follows:

1. When the value of I is 1, the timer starts running. During the counting of the timer,

the value of T remains 0. When the preset running time of the timer runs out, the

value of T becomes 1, which triggers the timer to restart counting immediately and

resets the value of T to 0.

2. When the value of I becomes 0, the timer stops running. The value of T will be 0

as long as the value of I is 0, regardless the status of the timer.

To configure the properties of the component, double-click on it, and you will see a

dialog box as shown in Figure 13.41.

Figure 13.41

The configuration parameters in Figure 13.41 are described as follows:
 Initial Time Variable: defines when Cycle Timer starts running.

You can either directly enter an Int constant for this parameter, or associate it to a
data in the real-time database.

 Runtime Variable: reflects the running of the timer.
You do not need to specify this variable if it is unnecessary to observe the
running status of the timer.

 Type: For Cycle Timer (Impulsive), you need to set this parameter to Impulsive.

13.3.8.7.5 Cycle Timer (Square Wave)

After you add a Cycle Timer (Sqaure Wave) component, the component is displayed

in the grid as shown in Figure 13.42.

Figure 13.42

I stands for the input of the timer. When the value of I is 1, the timer starts running;

when the value of I is 0, the timer stops running.

Same as Cycle Timer (Impulsive), Cycle Timer (Square Wave) is also executed at

intervals. However, there is difference in how they work, as described below:

• For Cycle Timer (Impulsive), the value of T becomes 1 when the preset running

time runs out, and then the timer restarts counting and the value of T is reset to 0.

Considering this, the output 1 of T is only a transient state. It can be understood

that an impulse with the value as 1 is generated for T at a specified interval.

• For Cycle Timer (Square Wave), the value of T also becomes 1 when the preset

running time runs out, and then the timer restarts counting. However, the value of

T remains 1 (instead of being reset to 0 immediately) until the preset running time

runs out again when its value is then reset to 0. During the next cycle of running,

the value of T remains 0; when the preset running time runs out again, the value of

T becomes 1. Therefore, it can be concluded that the value of T for Cycle Timer

(Square Wave) switches repeatedly between 0 and 1 at a specified interval, which

looks like a square wave.

Cycle Timer (Square Wave) works as follows:

1. At the beginning of the operation of the ladder diagram, the value of T is 0

since Cycle Timer (Square Wave) has not started running yet.

2. When the value of I is 1, the timer starts running. The value of T remains 0

during the first running of the timer. When the preset running time runs out,

the value of T beomes 1, and the timer restarts counting while the value of T

remains 1.

3. When the preset running time runs out for the second time, the value of T

switches back to 0, and the timer restarts counting while the value of T

remains 0.

4. As long as the value of I is 1, the output value of T switches repeatedly

between 0 and 1 at the specified interval.

5. When the value of I is 0, the timer will stop running. The output value of T will

be 0 as long as the value of I is 0, regardless the status of the timer.

To configure the properties of the component, double-click on it, and you will see a

dialog box as shown in Figure 13.43.

Figure 13.43

The configuration parameters in Figure 13.43 are described as follows:
 Initial Time Variable: defines when the timer starts running.

You can either enter an Int constant for this parameter, or associate it to a data in
the real-time database.

 Runtime Variable: reflects the running of the timer.
You do not need to specify this variable if it is unnecessary to observe the

running status of the timer.
 Type: For Cycle Timer (Square Wave), you need to set this parameter to Square

Wave.

13.4 Monitoring the Ladder Diagram

EASY provides the ladder diagram monitoring function, which facilitates you to easily

monitor the running status of the ladder diagram.

13.4.1 Monitoring Configuration

Before monitoring the ladder diagram, you need to configure the monitoring

parameters. Do as follows:

In the Ladder Diagram Editor window as shown in Figure 13.1, click on the

Monitoring menu and then the sub-menu Monitoring Configuration, and you will

see a dialog box as shown in Figure 13.44.

Figure 13.44

The configuration parameters in Figure 13.44 are described as follows:
 IP Address of Slave Device: specifies the IP address of the computer on which

the ladder diagram application is running.
 Scanning Cycle (ms): defines the monitoring interval (unit: ms).

13.4.2 Starting Monitoring

After you configure the monitoring parameters, click on on the Monitoring menu and

then the sub-menu Start Monitoring in the Ladder Diagram Editor window as shown in

Figure 13.1, and the monitoring of the ladder diagram is started. Once the monitoring

starts, it is not allowed to do any modification on the ladder diagram.

With the monitoring function, you can do the following operations.

13.4.2.1 Monitoring the Operation Process of the Ladder Diagram

After the monitoring function is started, the operation process of the ladder diagram

will be displayed in the ladder diagram editing area on the right side of the Ladder

Diagram Editor window, as shown in Figure 13.45.

Figure 13.45

As shown in the figure above, if the ladder diagram component is in green, it means

that the current value of the component is 1; otherwise, the current value is 0. If the color

of the connecting line is green, it means that the connecting line is in the Open state;

otherwise, it is in the Closed state.

You need to select the program block for monitoring. To select a program block,

double-click on it on the left side of the Ladder Diagram Editor window.

If the monitoring fails, the failure error will be displayed in the editing area on the right

side of the Ladder Diagram Editor window. For example, if communication exception

occurs, an error message as shown in Figure 13.46 will be displayed.

Figure 13.46

The possible error messages are listed in the table below:

Errror Message Possible Cause

Unable to connect to

the HMI!

Communication error!

Communication exceptions.

System error! System processing exceptions.

The program segment

or block does not exist!

The project you opened is inconsistent with that currently running in

the HMI.

The program block is

not running!

The current value of the operational variable associated with the

program segment where the program block belongs to is 0, which

causes the system to read that the program block is not running.

13.4.2.2 Forcibly Changing the Digital Input Settings

After the monitoring function is started, you can forcibly control the digital input

components directly in the editing area as shown in Figure 13.45.

Right-click on a digital input component, and you will see a right-click menu as shown

in Figure 13.47.

Figure 13.47

To forcibly change the value of the digital input to 1, click on Set as 1 on the

right-click menu; to forcibly change the input value to 0, click on Set as 0.

13.4.2.3 Monitoring the Data in the Real-Time Database

In the Ladder Diagram Editor window as shown in Figure 13.1, click on the

Monitoring menu and then the sub-menu Monitoring Real-Time Data, and the EASY

Real-Time Data Monitoring tool will be started, as shown in Figure 13.48.

Figure 13.48

With this tool, you can monitor or modify the data in the real-time database.

13.4.3 Stopping Monitoring

In the Ladder Diagram Editor window as shown in Figure 13.1, click on Monitoring

and then Stop Monitoring, and the monitoring function will be stopped.

13.5 System Variables for the Ladder Diagram

Database
Name

Variable Name
Data
Type

Default
Value

Description

system
PlcEnable bit 1 • When the variable value is

Database
Name

Variable Name
Data
Type

Default
Value

Description

1, the ladder diagram
function is enabled.

• When the variable value is
0, the ladder diagram
function is disabled.

PlcCycleTime ulong 100
This variable defines the cycle
for executing the ladder
diagram (unit: ms).

PlcHeartbeat bit

This variable defines the
heartbeat of the ladder
diagram during the operation.
As long as the ladder diagram
is running, the value of this
variable will switch repeatedly
between 0 and 1. The value
switch happens every time the
ladder diagram is executed.

Chapter 14 Expansion Module
Programming

14.1 Overview

EASY HMI allows you to add expansion modules. The expansion modules can be

added as dynamic databases into the HMI system and run as threads.

The expansion modules can be used for implementing special control algorithms or

dedicated communication protocols.

The expansion modules must be programmed in the standard C programming

language.

14.2 Module Export Functions

All expansion modules must be able to support two functions (external and non-static

functions) which are described in the rest of this section.

14.2.1 module_init

Original Function: int module_init(char *params)

Function Description: To initialize the module. EASY calls this function

automatically at the system startup. You can program the module

initialization code with this function.

Return Values: 0 Failed

 1 Successful

Parameters: params: Initialization parameters.

14.2.2 module_exit

Original Function: void module_exit()

Function Description: To exit the module. EASY calls this function

automatically at the system shutdown. You can program the module

exit code with this function.

Return Values: None.

Parameters: None.

Note: The above two functions must be exported from the dynamic database of the

module.

14.3 User IO Driver Module

The expansion module can also be used to realize specific IO driver. The driver will

be registered during the module initialization, so that the system can initialize and then

execute the driver automatically during the system operation.

The data architecture of the IO driver module is as follows:

typedef struct _ctrl_io_driver_t

{

 struct _ctrl_io_driver_t *next;

 char *name;

 int (*init)();

 int (*run)();

 void (*release)();

}ctrl_io_driver_t;

In the data architecture above, name refers to the name of the driver, the init function

pointer refers to the initial code of the driver, the run function pointer refers to the run

function of the driver, the release function pointer refers to the release code of the driver,

and the next function pointer is for system internal use only – for linking multiple drivers.

Among all these functions, the run function runs in a separate thread, while the other

functions run in the main thread of the HMI.

14.3.1 control_io_register_dirver

Original Function: int control_io_register_driver(ctrl_io_driver_t *io_driver)

Function Description: To call the function control_io_register_driver in the

module initialization function module_init to register the driver.

Return Values: 0 Failed

 1 Successful

Parameters: io_driver: Data architecture of the IO driver module.

Example:

static ctrl_io_driver_t echodemo_drive={NULL, "echodemo", echodemo_init,

echodemo_run, echodemo_release};

int module_init(char *params)

{

 control_io_register_driver(&echodemo_drive);

 return 1;

}

14.4 Real-Time Database Read/Write Functions

14.4.1 rtdb_set_data_value_by_name

Original Function: int rtdb_set_data_value_by_name(char *dbname,char

*dataname,void *data_value)

Function Description: You can use this function in the expansion module to

write the data in the real-time database. This function sets the value

of the data in the real-time database.

Return Values: 0 Failed

 1 Successful

Parameters: dbname: Name of a database.

 dataname: Name of a data.

 data_value: Value of a data. The value of a data varies according to the

data type. For example, the bit data has only 1 byte, the

long data has 4 bytes, and the length of the string data is

user-defined.

Example:

float value=1.0;

rtdb_set_data_value_by_name(“test”,”Ldata”,&value);

The above function sets the value of the data Ldata in the database

test to 1.0.

14.4.2 rtdb_get_data_value_by_name

Original Function: int rtdb_get_data_value_by_name(char *dbname,char

*dataname,void *data_value)

Function Description: You can use this function in the expansion module to

read the data in the real-time database. This function obtains the

value of the data from the real-time database.

Return Values: 0 Failed

 1 Successful

Parameters: dbname: Name of a database.

 dataname: Name of a data.

 data_value: Value of a data. The parameter data_value requires you to

assign the space in advance. For example, you need to

assign 1 byte of space for the bit data and 4 bytes of space

for the long data.

Example:

float value;

rtdb_get_data_value_by_name(“test”,”Ldata”,&value);

The above function obtains the current value of the data Ldata from

the database test and saves the value to the variable value.

14.5 Serial Port Communication Functions

EASY HMI provides some standard serial port communication functions, which

facilitates the user-defined serial port communication programming.

14.5.1 serial_open

Original Function: int serial_open(const char *device,int baud,int parity,int

data_bits,int stop_bits,int timeout)

Function Description: To open a serial port.

Return Values: -1 Failed

 Other value Serial port handle

Parameters: device: Serial port name, for example, COM1, COM2, or COM3.

 baud: Baud rate of the serial port. At present, the supported baud rates

are 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200.

 parity: Parity check mode, including No Parity Check

(SERIAL_PARITY_NO), Odd Parity Check

(SERIAL_PARITY_ODD), and Even Parity Check

(SERIAL_PARITY_EVENT).

 data_bits: Number of data bits, including 5, 6, 7, and 8.

 stop_bits: Number of stop bits, including 1 and 2.

 timeout: Duration of communication timeout (unit: ms).

Example: serial_open("COM1", 9600, SERIAL_PARITY_NO, 8, 1, 100)

14.5.2 serial_close

Original Function: int serial_close(int serial_id)

Function Description: To close a serial port.

Return Values: 0 Failed

 1 Successful

Parameters: serial_id: Serial port handle (returned by the function serial_open)

Example: serial_close(1)

14.5.3 serial_flush

Original Function: int serial_flush(int serial_id, int flag)

Function Description: To clear the buffering data of a serial port.

Return Values: 0 Failed

 1 Successful

Parameters: serial_id: Serial port handle (returned by the function serial_open)

 flag: Flush flag.

SERIAL_FLUSH_TX: clears the currently unsent data.

SERIAL_FLUSH_RX: clears the data in the receiving buffer.

SERIAL_FLUSH_TX|SERIAL_FLUSH_RX: clears the data in

both the sending and receiving buffers.

Example: serial_flush(1, SERIAL_FLUSH_TX|SERIAL_FLUSH_RX)

14.5.4 serial_write

Original Function: int serial_write(int serial_id, char *buf, size_t size)

Function Description: To send data to a serial port.

Return Values: -1 Failed

 Other value Actual length of the data sent

Parameters: serial_id: Serial port handle (returned by the function serial_open)

 buf: Buffer for keeping the data to be sent.

 size: Length of the data to be sent (unit: byte).

Example: serial_write(1,buf, sizeof(buf))

14.5.5 serial_read

Original Function: int serial_read(int serial_id, char *buf, size_t size)

Function Description: To receive data through a serial port.

Return Values: -1 Failed

 Other value Actual length of the data received

Parameters: serial_id: Serial port handle (returned by the function serial_open)

 buf: Buffer for keeping the received data.

 size: Size of the receiving buffer (unit: byte).

Example: serial_read(1,buf, sizeof(buf))

14.5.6 serial_poll

Original Function: int serial_poll(int serial_id, int timeout)

Function Description: To check whether there is data to read at a serial port.

Return Values: -1 Error

 0 Timeout, which meas no data is received during the

timeout period

 1 Data available to be read at the serial port

Parameters: serial_id: Serial port handle (returned by the function serial_open)

 timeout: For inquiring the timeout duration (unit: ms)

Example: serial_poll(1,100)

14.6 Other Functions

Expansion modules also support the functions programmed in the standard C

programming language and the internal functions provided in EASY HMI; for example, the

function sys_sleep (see EASY HMI User Manual for more details).

14.7 Expansion Module Commissioning

EASY HMI provides a commissioning solution which is based on Microsoft Visual

C++ 6.0. For details, see the example project echodemo.

In the echodemo project file, the echodemo directory covers for expansion module

projects, the echodemohost directory for serial port communication applications on the

host, and the project directory for EASY HMI projects which are for the demo of the

application of expansion modules.

The main function of the Echodemo project is to send a string to the HMI. The

host-side application will receive this string and then send it back. The Echodemo

expansion modules can call all the functions for serial port communication to realize

user-defined communication scenarios. See the source codes for the working principles of

expansion modules.

The main procedure for compiling the VC project for expansion modules is listed as

follows:

1) Create a VC standard dynamic library DLL project (MFC support not required).

2) Add the source files for expansion modules (such as echodemo.c), the header

file EASY.h and the DEF file (such as echodemo.def). The DEF file needs both

export functions module_init and module_exit.

3) Add all applications and files of the EASY runtime library. For example, add the

applications and files lcrun.exe, lcrun.dll, lcrun.lib, iconv.dll, libiconv-2.dll,

libxml2.dll, pic.dll, and the files in the directory conffile to the project directory.

4) Set project parameters, and add the reference of the library lcrun.lib in the Link

library.

5) Set project commissioning parameters. Set lcrun.exe as an executable file under

Debug, and set the program parameter as a project in EASY HMI (such

as ..\project).

6) Set the project Post-build parameter to copy the module file to the HMI project

directory; for example, copy .\debug\echodemo.dll ..\project\echodemo.dll.

7) Compile and then commission the project.

14.8 Expansion Module Management

After you complete compiling an expansion module, you need to integrate the module

into the developed project, so that the module can be downloaded or run together with the

project. This can be done through the EASY Project Manager window. The detailed

procedure is listed as follows:

1) Configure the expansion module in the Project Manager window.

2) Compile the expansion module.

3) Download the expansion module to the HMI.

The rest of this section describes this procedure in details.

14.8.1 Configuring an Expansion Module

You can define more than one expansion module in a project. These expansion

modules can be configured and managed through Expansion Module Configuration in

the Project Manager window.

14.8.1.1 Adding a Module

To add an expansion module, do as follows:

1) In the navigation tree on the left side of the Project Manager window, select

Expansion Module Configuration. Right-click in the blank area on the right side

of the window, and you will see a right-click menu as shown in Figure 14.1.

Figure 14.1

2) Select Add a Module, and you will see the dialog box as shown in Figure 14.2.

Figure 14.2

The configuration parameters in Figure 14.2 are described as follows:
 Module Name: The name of the module. You can choose any name for an

expansion module. However, the expansion modules in the same project cannot
have the same name.

 Additional Compiling Definition: corresponds to the compiling option, such as
-D_DEBUG –D_MYDEF –Ic:\myinclude in the C language.

 Source File: specifies the source file(s) to be compiled.
 Initialization Parameter: defines the initialization parameter for the expansion

module. The value of this parameter is a user-defined string, which will be used
as the value of param in the module initialization function module_init at the
module initialization.

 Disable the module: If this option is checked, the module will be disabled, which
means that the system will not load the module and that the module will not be
executed.

3) Click on OK after the module configuration is complete.

The configured module will be displayed in the module list on the right side of the

Project Manager window, as shown in Figure 14.3.

Figure 14.3

14.8.1.2 Deleting a Module

To delete a module, do as follows:

1) In the navigation tree on the left side of the Project Manager window, select

Expansion Module Configuration.

2) On the right side of the Project Manager window, right-click on the expansion

module you want to delete, and you will see a right-click menu as shown in Figure

14.4.

Figure 14.4

3) Select Delete a Module.

The selected module will be deleted.

14.8.1.3 Modifying Module Cofiguration

To modify the configuration of an expansion module, do as follows:

1) In the navigation tree on the left side of the Project Manager window, select

Expansion Module Configuration.

2) On the right side of the Project Manager window, right-click on the expansion

module for which you want to modify the configuration, and you will see a

right-click menu as shown in Figure 14.5.

Figure 14.5

3) Select Modify.

You can modify the module configuration according to your needs.

14.8.2 Compiling an Expansion Module

The configured expansion modules can be downloaded to the HMI only after they are

compiled.

To compile an expansion module, do as follows:

1) In the navigation tree on the left side of the Project Manager window, select

Expansion Module Configuration.

2) On the right side of the Project Manager window, double-click on the expansion

module you want to compile, and you will see a dialog box as shown in Figure

14.2.

3) Click on the Compile button to start compiling the module.

14.8.3 Downloading an Expansion Module

Once compiled successfully, the expansion modules will be copied automatically to

the HMI project directory. They are downloaded together with the project to the HMI; you

do not need to download the module individually.

Chapter 15 Access Management

15.1 Overview

In practical operation, some interfaces can only be accessed by the users with higher

privileges considering security reasons. The role of operator does not have the privilege to

access such interfaces. Regarding this, EASY provides the access management function.

The access management function of EASY is actually window-based, which means it

allows configuring security privileges for each window.

The access management function of EASY involves the following concepts:

1. Security Level:

In the EASY system, different windows have different privileges. Actually, you can

define the security level from each window.

At present, EASY supports 10 security levels from level 1 to level 10, among which

level 1 is the lowest while level 10 is the highest. During the configuration, you can set a

password for each level, and the passwords for the ten levels are saved individually in the

system variables from $hmi_system_set.security_level1_pass to

$hmi_system_set.security_level10_pass.

2. Security Level of Window:

During the configuration, you can set a security level for each window. This security

level actually defines the access privilege of the window.

3. Current Security Level of System:

The system is always running under certain security level. The current security level

of the system is saved in to the system variable $hmi_system_set.cur_security_level.

To change the current security level of the system, you can change the value of this

variable in the script.

When you access a window, the system will automatically compare whether the

current security level of the system is Equal To Or Greater Than the security level of the

window: If so, the system has higher security level compared to the window, and thus you

can access the window; otherwise, the system is at a lower security level, and thus you

need to pass the access authentication to access the window.

To implement the access management function, follow the steps below:

1. Set the password for each security level.

2. Set the window properties related to access management.

3. Change the current security level of the system.

See the following sections for details.

15.2 Setting Security Level Password

The passwords for the ten security levels from level 1 to level 10 are saved

individually to the system variables from $hmi_system_set.security_level1_pass to

$hmi_system_set.security_level10_pass. You can modify the password of each

security level according to your needs. If you leave the password of a security level to

blank, it means that the specific security level is not in use. The security level password

can be as long as 20 characters (including the end character \0 of a character string).

You can set the security level in the following two ways:

• Change the value of the security level in the script during the configuration.

• Set the initial value for each password during the parameter configuration as

shown in Figure 15.1.

Figure 15.1

15.3 Setting Window Properties Related to Access

Management

There are two window properties which are related to access management, as shown

in Figure 15.2:

Figure 15.2

 Security Level: defines the security level of the window. The value range is from
0 to 10, among which the values from 1 to 10 correspond to security level 1 to
security level 10 individually. If you set the security level of the window to 0, it
means that you can access the window without any security authentication.
Because the value 0 is the lowest security level you can set for the window. In
this case, the current security level of the system can always be higher than that
of the window, and thus you can directly access the window.

 Security Processing Mode: As stated above, when the current security level of
the system is lower than that of the window, you are not allowed to access the
window, and thus the system will process these kind of situations according to
setting of the Security Processing Mode property of the window. The following
settings are available for this property:
1) No Prompt: You are not allowed to access this window, and no error

message will be prompted.

2) Prompt No Access: You are not allowed to access the window, and a dialog

box will be displayed prompting that you do not have enough access to

access the window.

3) Prompt for Password: A window will pop out prompting for a password. The

system will verify the entered password for authentication. You can access

the window only after the entered password passes the authentication. The

password authentication goes as follows: The system compares the entered

password with the passwords for each of the security levels starting from the

current security level of the window. The authentication is successful only

when the entered password is consistent with that of one of the security

levels among then 10; otherwise, the authentication fails.

15.4 Setting Current System Security Level

The current security level of the system is saved to the system variable

$hmi_system_set.cur_security_level. The value range of this variable is 0 – 10, with

the default value as 0.

You can change the current security level of the system in the following two ways:

• Change the value of the current security level in the script during the

configuration.

• Set the initial value for this variable during the parameter configuration, as shown

in Figure 15.3.

Figure 15.3

Chapter 16 Printing

16.1 Overview

EASY provides the window-based printing function, which allows you to print any

area in the current window.

To print from the window, you need to do the following:

1. Set printing parameters.

2. Call the printing function to realize the printing function.

See the following sections for more details.

16.2 Setting Printing Parameters

At present, EASY supports the following printing parameters:

• Printer Type

• Printing Resolution

• Paper Type

• Top Margin

• Left Margin

• Printing Scaling

Each of the above printing parameters is associated with a system variable. Before

you start printing, you must set the printing parameters appropriately according to your

actual needs.

The printing parameters are described in details in the table below.

Parameter

Name
System Variable Description

Printer Type printer.printer_name Indicates the model of the printer.

Printing

Resolution
printer.resolution

Defines the printing resolution (measured

in DPI).

Paper Type printer.paper Defines the paper type, such as A4.

Left Margin printer.left_margin
Defines the left margin of the printing

(unit: cm).

Top Margin printer.top_margin
Defines the top margin of the printing

(unit: cm).

Printing Scaling printer.scaling Defines the printing scaling value.

You can set these printing parameters in the following three methods:

Method 1: In the Project Manager window, select Configuration and then Printing

Setting, and you will see the dialog box as shown in Figure 16.1.

Figure 16.1

Select the printing parameters according to your actual needs, and then click on OK.

Method 2: You can set an initial value for each printing parameter in the Parameter

Configuration window, as shown in Figure 16.2. (Here, it takes the Printer Type

parameter for example.)

Figure 16.2

Method 3: You can set or change the value of the printing parameters in the script

during the configuration.

16.3 Calling Printing Function

You can call the system function print_window for printing from the window. At

present, this function allows only printing from the currently displayed window.

This function is described in details below:

Original Function: int print_window(char *window_name, int x1, int y1, int x2,

int y2)

Function Description: To print the selected area from the currently displayed

window.

Return Values: 1 Successful

 Other value Failed

Parameters: window_name: Name of the window to be printed.

 x1: X-axis value of the left top corner of the area to be printed.

 y1: Y-axis value of the left top corner of the area to be printed.

 x2: X-axis value of the right bottom corner of the area to be printed.

 y2: Y-axis value of the right bottom corner of the area to be printed.

Considering that printing might take some time, the system function print_window

will return the value immediately rather than waiting for the printing to be complete. And

then the printing operation will be processed at the background. You can check the

printing status by inquiring the system variable printer.status. The value of printer.status

can be one of the following:
 0 -- Idle
 1 -- Printing
 2 -- Printer not connected
 3 -- Printer type not supported
 4 -- Printing error

Chapter 17 Other Commonly-Used
Functions

17.1 Offline Simulation

The Offline Simulation function allows you to simulate the project operation directly

on the PC, which saves you the trouble of downloading the project to the HMI. This

function greatly facilitates the programming and the commissioning. At present, EASY

supports simulating almost all the functions on the PC, such as interface configuration,

communication, and soft PLC.

To realize the offline simulation for a project after it is compiled and saved, select the

menu Tools and then the sub-menu Offline Simulation in the Project Manager window.

Alternatively, you can click on the button in the toolbar or press on the shortcut key
F5. You will see the offline simulation window as shown in Figure 17.1.

Figure 17.1

By default, a set of menus will be displayed in the offline simulation window, which

allows you to implement the project commissioning easily. If you do not want these menus

to be displayed, you need to add the system parameter $system.HideMainWindow

during the parameter configuration, as shown in Figure 17.2.

Figure 17.2

If you set the value of the parameter $system.HideMainWindow to 1, the menus will

not be displayed; if you set it to 0 or leave it blank, then the menus will be displayed.

During the offline simulation mode, click on the menu Window and then the

sub-menu Real-Time Data Display, and you can see the Real-Time Data List dialog box,

as shown in Figure 17.3. In this dialog box, you can monitor the data in both the real-time

database and the interface database.

Figure 17.3

The Real-Time Data List dialog box is composed of two panes, left and right. The left

side pane lists all the data in the current real-time database (including the user-defined

data and the internal system data), and the rightside pane lists all the data in the interface

database (including the user-defined data and the system internal data). In this dialog box,

you can not only view the current value of the data, but also change the value forcibly. Do

it as follows:

Double-click on the data you want to change in the data list, and you can see the

corresponding database name, variable name, and variable value displayed in the editing

area at the bottom of the window. You can enter the database name and variable name

corresponding to the selected data, and then enter the data value to be changed for

Variable Value, and then click on the Settings button.

Besides the Real-Time Display sub-menu, the Window menu also includes the

sub-menus which stand for all the configuration interfaces of the current project. The

names of the menus correspond to the names defined for Window Title of the interfaces

in Project Manager. In other words, by selecting a sub-menu, you can go to the

corresponding interface directly.

17.2 Online Simulation

Different from the offline simulation, the online simulation requires downloading the

application to the HMI. Besides, the PC must communicate well with the HMI for the data

required for the online simulation to be transferred from the HMI to the PC, so that the

online simulation can be realized on the PC.

To realize the online simulation, select the Tools menu and then the Online

Simulation sub-menu or click on the button in the toolbar, and you will see the
Online Simulation dialog box as shown in Figure 17.4.

Figure 17.4

The configuration parameters in Figure 17.4 are described as follows:
 IP Address: specifies the IP address of the HMI.
 Communication Port: specifies the number of the interception port of the HMI;

the system default port number is 8200.
 Timeout Time: defines the period of timeout which occurs during the

communication between the PC and the HMI (unit: ms).
 Communication Cycle: defines the interval for the PC to obtain data from the

HMI (unit: ms).
After you configure all the parameters, click on Run, and you can start the online

simulation of a project. Click on the Window menu and then the Real-Time Data Display

sub-menu to monitor the data in both the real-time database and the interface database.

For more details, see section 17.1 Offline Simulation.

17.3 Setting Project Password

You can set a password for each project. When uploading a project, you will be

prompted to enter the password. You are allowed to upload the project only when you

enter the correct password.

To set the project password, do as follows:

1) In the Project Manager window, click on the Tools menu and then the

Download a Project sub-menu or click on the button in the toolbar, and
you will see the Download a Project dialog box as shown in Figure 17.5.

Figure 17.5

2) Click on the Set Password button, and you will see a dialog box as shown in

Figure 17.6.

Figure 17.6

3) Set the password in Figure 17.6, and then click on OK.

17.4 Uploading Projects

EASY allows you to upload projects to the PC from the HMI.

To upload a project, do as follows:

1) In the Project Manager window, click on the Tools menu and then the Upload a

Project sub-menu or click on the button in the toolbar, and you will see
the Upload a Project dialog box as shown in Figure 17.7.

Figure 17.7

The configuration parameters in Figure 17.7 are described as follows:
 Slave IP Address: refers to the IP address of the HMI.
 Project Password: refers to the password you set for the project.
 Upload Path: defines the path for saving the project uploaded to the PC from the

HMI.
2) After you configure all the parameters, click on the Upload button.

17.5 Time Calibration

The time calibration function of EASY is for calibrating the system time of the HMI,

namely, to keep it consistent with that of the PC.

To calibrate the system time of the HMI, do as follows:

1) In the Project Manager window, click on Tools menu and then the Download a

Project sub-menu, or click on the button in the toolbar, and you will see
the Download a Project dialog box as shown in Figure 17.8.

Figure 17.8

2) Specify the IP address of the HMI behind Slave IP Address, and then click on the

Calibrate button.

17.6 Downloading Upgrade Packages

The Download Upgrade Packages function allows you to specify and then download

a upgrade package to the HMI.

A upgrade package actually refers to the upgrade file with the file extension name as

lcp. A upgrade package may refer to either of the following:

• Upgrade file generated after you click on the Generate a Download

Package button in the Download a Project dialog box as shown in Figure

17.8.

This upgrade file is saved in the sub-folder download in the project path. By

downloading this upgrade package, you can upgrade the project in the HMI.

• Other upgrade packages provided by the system, which are for upgrading the

bottom system or realizing other functions.

To download a upgrade package, do as follows:

1) In the Project Manager window, click on the Tools menu and then the

Download Upgrade Package sub-menu, or click on the button in the
toolbar, and you will see the Download Upgrade Package dialog box as shown

in Figure 17.9.

Figure 17.9

The configuration parameters in Figure 17.9 are described as follows:
 Slave IP Address: refers to the IP address of the HMI.
 Upgrade File: specifies the upgrade file which is required to be downloaded to

the HMI.
2) After you configured all the parameters, click on the Download button.

Once the downloading of the upgrade package is complete, the HMI might need a

restart depending on the contents of the upgrade package.

17.7 Downloading Startup Interface

The Downloading Startup Interface function allows you to set the start-up interface of

the HMI to be displayed at the system start.

To download the startup interface, do as follows:

1) In the Project Manager window, click on the Tools menu and then the

Download Startup Interface sub-menu, or click on the button in the
toobar, and you will see the Download Startup Interface dialog box as shown in

Figure 17.10.

Figure 17.10

The configuration parameters are described as follows:
 Slave IP Address: refers to the IP address of the HMI.
 Interface to Download: specifies the name of the file which contains the startup

interface.
2) After you configure all the parameters, click on the Download button.

17.8 Monitoring HMI Operation

The Monitoring HMI Operation function allows you to monitor the CPU and Memory

utilization during the HMI operation.

To monitor the HMI operation, do as follows:

1) In the Project Manager window, click on the Tools menu and then the Monitor

HMI Operation sub-menu, and you will see the Operation Monitoring dialog

box as shown in Figure 17.11.

Figure 17.11

2) Set the IP address of the HMI behind Slave IP Address, and then click on the

Start Monitoring button, which starts the monitoring of the HMI operation.

In this dialog box, you can monitor the following aspects of the HMI operation:

 Memory Utilization

 Total Memory: Total memory size of the HMI.
 Used Memory: Size of the HMI memory which is currently being used for the HMI

operation.The memory here refers to the memory taken by all the applications
running in the HMI, not only the memory taken by the user-defined project, but
also that taken by the bottom system.

 Available Memory: Size of the HMI memory which is available for other usages.

 Application Status
 Used Memory: Size of the HMI memory taken by the user-defined project.
 Used Memory Ratio: Ratio of the memory taken by the user-defined project

against the total size of the HMI memory.
 CPU Utilization: Amount of CPU utilized by the user-defined project.

17.9 Monitoring Real-Time Data

The Monitoring Real-Time Data function allows you to monitor the real-time data of

the project currently running in the HMI.

To monitor the real-time data of a project, do as follows:

1) Click on Start, go to EASY Industrial Control Software, and you can see a

Real-Time Data Monitoring tool, as shown in Figure 17.12.

Figure 17.12

2) Click on Real-Time Data Monitoring, and the EASY Real-Time Data

Monitoring window will be displayed, as shown in Figure 17.13.

Figure 17.13

3) Before starting monitoring the real-time data, you need to configure the

monitoring settings: Click on the Monitoring Setting button, and you will see the

Monitoring Setting dialog box as showin in Figure 17.14.

Figure 17.14

The configuration parameters in Figure 17.14 are described as follows:
 Project Path: specifies the path where the user-defined project is saved. The

project specified here must be the one currently running in the HMI.
 Slave IP Address: specifies the IP address of the HMI.

 Scanning Cycle: defines the interval period for the monitoring tool to obtain data
from the HMI.

4) After you configure all the above parameters, click on OK in the Monitoring

Setting dialog box, and all the data in the real-time database of the selected

project will be listed in the Real-Time Database list in Figure 17.13.

5) Click on the Start Monitoring button, and the system starts monitoring the

currently running project.

During the monitoring, you can not only obtain the real-time value but also forcibly

change the value of the data in the real-time database.

Double-click on the data you want to change in the data list, and you can see

Database Name, Variable Name, and Variable Value related to the selected

data displayed at the bottom of the EASY Real-Time Data Monitoring window

as shown in Figure 17.13.

Alternatively, you can enter the database name and variable name of the data you

want to change at the bottom of the EASY Real-Time Data Monitoring window,

enter the value to be changed to behind Variable Value, and then click on

Modify Value button.

6) To stop the monitoring, click on the Stop Monitoring button.

7) To always see the EASY Real-Time Data Monitoring window on top, you can

check the Always on top option.

17.10 Downloading Projects to Flash Drive

The Downloading Projects to Flash Drive function allows you to download project files

to the HMI using the flash drive.

To download project files through the flash drive, follow the steps below:

1) Generate the downloading package.

To generate a downloading package, do as follows:

a) In the Project Manager window, click on the Tools menu and then the

Download a Project sub-menu, or click on the button in the toolbar,
and you will see the Download a Project dialog box as shown in Figure

17.15.

Figure 17.15

b) Specify the IP address of the HMI behind Slave IP Address, and then click on

the the Generate a Download Package button.

The file lcupdate.lcp will be generated and saved to the download sub-folder

in the path where the project is saved. This lcupdate.lcp file is the upgrade

package file for this project.

2) Copy the downloading package to a flash drive.

Copy the upgrade file lcupdate.lcp from the download sub-folder of the project

path to a flash drive.

3) Import the package file from the flash drive to the HMI.

Insert the flash drive to the USB port of the HMI. You can import the upgrade

package file to the HMI in the following two ways:

• Use the Program Upgrade (USB) button in the System Setting window.

To see the System Setting window, press down in sequence the top left

corner, the top right corner, and then the bottom left corner of the HMI. Th e

System Setting window will be shown as Figure 17.16.

Figure 17.16

Click on the Program Upgrade (USB) button, and the upgrade file

lcupdate.lcp will be copied to the HMI.

• Use the system function prog_upgrade.

During the interface configuration, you can call directly the system function

prog_upgrade to copy the upgrade file lcupdate.lcp from the flash drive to

the HMI.

17.11 System Setting Window

EASY allows you to configure the basic HMI system parameters, such as those

related to the network card and the touch screen, in the System Setting window.

To see the System Setting window, use one of the following two ways:

• Press down in sequence the top left corner, the top right corner, and then the

bottom left corner of the HMI.

• Call the system function hmi_sys_set_wnd during the interface configuration.

The System Setting window is shown as Figure 17.17.

Figure 17.17

The System Setting window allows you to achieve the following four functions.

17.11.1 Setting Parameters

You can modify all the parameters listed in the System Setting window. Click on

Save Settings, and all the modified values will be saved to the system.

You can modify the following parameters:

1. Network Card Settings

The network card settings cover two network cards: Network Card 1 and Network

Card 2. Depending on the model of the HMI, some HMIs might have only one network

port. For these HMIs, you need only to configure settings for Network Card 1. For the

HMIs which have two network ports, you need to configure settings for both of them.

The network card settings include the following parameters:
 IP Address: specifies the IP address of the network card.
 Subnet Mask: specifies the subnet mask of the network where the network card

is configured.
 Default Route: specifies the default route of the network where the network card

is configured.

2. Display Settings

The display settings include the following parameters:
 Screen Brightness: sets the brightness level of the touch screen.

 Screensaver Delay: defines the delay time of the screensaver.
If you do not do any operations on the HMI after the defined delay time period,
the sysem will enable the screensaver.
If you set this parameter to 0, the screensaver will be disabled.

3. Serial Port Settings

Depending on the model of the HMI, some HMIs provide 3 serial ports, among which

COM1 is a dedicated RS232 serial port, while COM2 and COM3 work as both RS232 and

RS485 serial ports. You can choose whether to have COM2 and COM3 work as RS232 or

RS485 serial ports.

4. Time Settings

In the Time Settings part, you can set the system time of the HMI.

5. Timeout Window Display Settings

As described in a previous section, you can configure links through the Device

Configuration node in the Project Manager window. If the communication on one link

stops, the Communication Timeout window will be displayed by default, as shown in

Figure 17.18.

Figure 17.18

Click on behind Timeout Window Display to configure whether to display the

Communication Timeout window: If you set it to red as , the window will be

displayed; if you set it to white as , the window will not be displayed.

17.11.2 Adjusting the Touch Screen

In the System Setting window as shown in Figure 17.17, click on the Adjust Touch

Screen button, and you will see the touch screen adjustment interface. You can see a

cross sign + on the top left corner, top right corner, bottom left corner, bottom right corner,

and the middle of the interface. You can click on the middle point of each + to adjust the

touch screen.

17.11.3 Program Upgrade (Through the USB Port)

Click on the Program Upgrade (USB) button in the System Setting window as

shown in Figure 17.17, and you can download the project upgrade file to the HMI from the

flash drive. For more details, see section 17.10 Downloading Projects to Flash Drive.

17.11.4 System Restart

To restart the HMI system, click on the System Restart button in the System Setting

window as shown in Figure 17.17.

Chapter 18 Gallery Controls

18.1 Overview

EASY provides a control gallery with various powerful control components. They can

be used to easily and vividly show the control procedure and process according to the

requirements of various projects.

To add a control component from the gallery, do as follows:

1) Click on the Gallery button in the toolset on the left side of the Interface

Editor window, and you will see the dialog box Select from Gallery as shown in

Figure 18.1.

Figure 18.1

2) Click on the graphic component you need, and click on OK.

3) Move the cursor to the editing area on the right side of the window, and you can

see the cursor in the shape of a cross.

4) Drag the cursor, and you can see the selected component is displayed.

18.2 X_Y Curve

18.2.1 Overview

In the Select from Gallery dialog box, click on the X_Y Curve component and move

the cursor to the editing area on the right side of the window, and you can see the cursor

become a cross. Grag the mouse to draw a rectangle, and the X_Y curve will be displayed

within this rectangle, as shown in Figure 18.2.

Figure 18.2

In the middle of the displayed X_Y curve component is the drawing area with gridlines.

The X and Y curves will be drawn within this drawing area: The X-axis will be on the left

and the Y-axis at the bottom. Select the X_Y curve component, and you will see 8 small

rectangles on the four sides. You can use these 8 small rectangles to move or resize the

component.

The gridlines in the drawing area are composed of two types of dividing lines: the

ones vertical to the X-axis and the ones vertical to the Y-axis. You can set the number of

dividing lines at each direction. For example, if you set the number of vertical lines to 5,

then the whole drawing area will be divided into 6 identical areas by the 5 vertical lines.

The X_Y curve is different from the real-time trend curve as follows:

• Real-Time Trend Curve: The X-axis is time and the Y-axis is variable. Th

real-time trend curve shows the change tendency of the variable against the change

of time.

• X_Y Curve: Both the X-axis and the Y-axis are variables. The X_Y curve shows

the change tendancy of one variable against the change of the other.

18.2.2 Properties of the X_Y Trend Curve

After you draw an X_Y trend curve, select the curve with a left click, the Property List

pane will be displayed on the right side of the editing area listing all the properties of this

X_Y curve.

The properties of the X_Y curve are composed of the following five property nodes,

as shown in Figure 18.3:

• Basic Properties

• Events

• Initial X_Y Trend Curve Properties

• X_Y Trend Curved Line Properties

• X_Y Trend Indicator Line Properties

Figure 18.3

For more details on basic properties, see section 5.3.3 Basic Properties.

For more details on events, see section 5.3.5 Events.

18.2.2.1 Initial X_Y Trend Curve Properties

An X_Y trend curve control can display curves for multiple data. This section

describes the common properties of all the X_Y trend curves.

Property Description
Remarks on Dynamic

Properties
Minimum
X-axis Value

Value of startpoint on the X-axis.

Maximum
X-axis Value

Value of the endpoint on the X-axis.

The return value is numeric.
Changing these two values will
zoom the curve vertically.

Minimum
Y-axis Value

Value of the startpoint on the Y-axis.

Maximum
Y-axis Value

Value of the endpoint on the Y-axis.

The return value is numeric.
Changing these two values will
zoom the curve horizontally.

Maximum
Number of
Points

Maximum number of data points
distributed horizontally across the curve.

No dynamic properties.

Number of
Displayed
Points

Number of the data points displayed
horizontally across the curve.

The return value is an integer.
This property, together with the
Maximum Number of Data
Points property, zoom the
curve horizontally.

Number of
Vertical Lines

Number of the dividing lines vertical to the
Y-axis.

The return value is an integer.

Number of
Vertical Lines

Number of the dividing lines vertical to the
X-axis.

The return value is an integer.

Horizontal
Spacing

Left or right spacing between the curve
drawing area of the control and the left or
right margin.

The return value is an integer.

Vertical
Spacing

Top or bottom spacing between the curve
drawing area of the control and the top or
bottom margin.

The return value is an integer.

Background
Color

Background color of the control.

Background
Color of
Curves

Backgroun color of the curve drawing area
of the control.

Color of
Vertical Lines

Color of the dividing lines vertical to the
Y-axis.

Color of
Horizontal
Lines

Color of the dividing lines vertical to the
X-axis.

Text Color Color of the text beside the X- and Y- axis.

The expression of the dynamic
script returns the RGB values of
the color.

Number of
Curved Lines

Number of the curved lines to be
displayed; 16 the most.

No dynamic properties.

Data Source Data source of the trend curve: No dynamic properties.

Property Description
Remarks on Dynamic

Properties
• Real-Time Memory Record: The
data used in the trend curve comes from
the current values of the data in a
real-time data record.
• File: If you save a real-time data
record to a file, you can set the data
source to File. In this case, the curve is a
saved trend curve.

Trend Name

Valid when Data Source is set to
Real-Time Memory Record.
The trend name is actually the name of a
real-time data record. This name must be
defined in a real-time data record in the
Project Manager window.

No dynamic properties.

File Location

Valid when Data Source is set to File.
This property defines where the real-time
data record is kept, internal flash or the CF
card.

The return value is 0 or 1:
• 0: Internal flash
• 1: CF card

File Name
Valid when Data Source is set to File.
This property defines the name of the
real-time data record file.

The return value is a string with
the name of the real-time record
file.

Start Point
Valid when Data Source is set to File.
This property defines from which data
point of the record the curve is to display.

The return value is int.
Changing this value will move
the curve horizontally.

18.2.2.2 X_Y Trend Curved Line Properties

You can configure data and color properties for each curve, and you can configure for

up to 16 curves.

Properties Description
Remarks on

Dynamic Properties

Variable X

Name of the variable corresponding to the X-axis of
the trend curve.
This variable must be defined in the real-time data
record.
If you do not specify this variable, then the curve will
not be displayed.

Variable Y
Name of the variable corresponding to the Y-axis of
the trend curve.
This variable must be defined in the real-time data

The return value is a
string with the name of
the data displayed by
the curve.
If the returned string is
a blank string, (“”),
then the curve will not
be displayed.

record.
If you do not specify this variable, then the curve will
not be displayed.

Curve Color Color of the trend curve.

The expression or
dynamic script returns
the RGB values of the
color.

18.2.2.3 X_Y Trend Indicator Line Properties

Properties Description
Remarks on

Dynamic Properties

Allow
Indicator Line

Defines whether the control allows indicator lines.
The return value is int:
• 0: Not Allow
• Non 0: Allow

Color of
Indicator Line

Color of the indicator lines.

The expression or
dynamic script returns
the RGB values of the
color.

X Value
Variable

The X-axis data value of the curve the indicator line
points to is saved to this variable.

The return value is a
string with the name of
the time variable.

Y Value
Variable

The Y-axis data value of the curve the indicator line
points to is saved to this variable.

The return value is a
string with the name of
the data value
variable.

18.3 Pump

Properties Description
Remarks on Dynamic

Properties

Pump Start Color
Defines the color of the

indicator light.

General Pump Color
Defines the color of the whole

pump.

The expression or dynamic

script returns the RGB values

of the color.

18.4 Conveying Belt

Properties Description
Remarks on Dynamic

Properties

Wheel Color
Defines the color of the
wheel.

Transmitter Color
Defines the color of the
transmitter.

The expression or dynamic
script returns the RGB values
of the color.

18.5 Valve

Properties Description
Remarks on Dynamic

Properties

Valve Start Color
Defines the color for the start
of the valve.

Valve End Color
Defines the color for the end
of the valve.

The expression or dynamic
script returns the RGB values
of the color.

18.6 Reactor

Properties Description
Remarks on Dynamic

Properties

Reactor Body Start Color
Defines the color for the start
of the reactor body.

Reactor Body End Color
Defines the color for the end
of the reactor body.

Reactor Leg Start Color
Defines the color for the start
of the reactor leg.

Reactor Leg End Color
Defines the color for the end
of the reactor leg.

Reactor Foot Start Color
Defines the color for the start
of the reactor foot.

Reactor Foot End Color
Defines the color for the end
of the reactor foot.

The expression or dynamic
script returns the RGB values
of the color.

18.7 Pipe

Properties Description
Remarks on Dynamic

Properties

Start Color
Defines the color for the start
of the pipe.

End Color
Defines the color for the end
of the pipe.

The expression or dynamic
script returns the RGB values
of the color.

Direction
Defines the direction of the
pipe.

The expression or the
dynamic script returns the
value ranging from 1 to 4,
which stand for Top Right,
Bottom Right, Top Left, and
Bottom Left from top to
bottom in the drop-down list.

Pipe Width Defines the width of the pipe.

The expression or dynamic
script returns an int value,
which is the width of the pipe.

18.8 Switch

Properties Description Remarks on Dynamic Properties

Variable Name
Specifies the name of the
associated variable.

No dynamic properties.

General Background
Color

Sets the general
background color.

Button Background
Color

Sets the background color
for the small buttons in the
middle.

Top Button Shadow
Color

Sets the color of the top
shadow for the small
buttons in the middle.

Bottom Button
Shadow Color

Sets the color of the bottom
shadow for the small
buttons in the middle.

Top Shadow Color
Sets the color of the top
shadow for the whole
switch.

Bottom Shadow Color
Sets the color of the bottom
shadow for the whole

The expression or dynamic script
returns the RGB values of the color.

switch.

Button Direction
Sets the direction of the
button.

The expression or dynamic script
returns the value 0 or 1, which stand
for Bounced Up and Pressed Down
from top to bottom in the drop-down
list.

Shadow Width
Sets the shadow width for
the whole switch.

Button Shadow Width
Sets the shadow width for
the button.

The expression or dynamic script
returns an int, which is the width of the
shadow.

18.9 Motor

Property Description Remarks on Dynamic Properties

Motor Indicator
Color

Sets the color of the
indicator light of the
motor.

The expression or dynamic script returns the
RGB values of the color.

18.10 Panel

Properties Description
Remarks on Dynamic

Properties

External Panel
Status

Defines the status of the external panel,
Raised or Embedded.

The expression or dynamic script
returns the value 0 or 1, which
stands for Raised and
Embedded from top to bottom in
the drop-down list.

External Panel
Highlight Color

Sets the highlight color for the external
panel.

External Panel
Shadow Color

Sets the shadow color for the external
panel.

Internal Panel
Highlight Color

Sets the highlight color for the internal
panel.

Internal Panel
Shadow Color

Sets the shadow color for the internal
panel.

Internal Panel
Filling Color

Sets the filling color for the internal panel.

External Panel
Filling Color

Sets the filling color for the external
panel.

The expression or dynamic script
returns the RGB values of the
color.

Internal Panel
Status

Defines the status of the internal panel,

Raised, Embedded, or Transparent.

The expression or dynamic script
returns the value ranging from 0
to 2, which stand for Raised,
Embedded, and Transparent
from top to bottom in the
drop-down list.

Panel Space
Sets the space between the internal and
external panels.

The expression or dynamic script
returns an int value, which is the
space between the internal and
external panels.

18.11 Soft Keyboard

Properties Description Remarks on Dynamic Properties
Background
Color

Sets the background color of
the keyboard.

Text Color
Sets the color of the keyboard
text.

Key Color
Sets the color of the keys on
the keyboard.

The expression or dynamic script returns the
RGB values of the color.

Key Font Size
Sets the font size for the text
on the keyboard.

The expression or dynamic script returns an
int value:
• 0: Default font size
• Other int: Font size specifies by the
returned int value

18.12 Clock

18.12.1 Properties of the Panel Clock

Properties Description Remarks on Dynamic Properties
Hour Hand
Color

Sets the color of the hour hand.

Minute Hand
Color

Sets the color of the minute
hand.

Second Hand
Color

Sets the color of the second
hand.

Disk
Background
Color

Sets the background color of the
clock disk.

Arc Color Sets the color of the frame arc.

The expression or dynamic script returns
the RGB values of the color.

Arc Width Sets the width of the frame arc.
The expression or dynamic script returns
an int, which is the width of the outer arc.

18.12.2 Properties of the Digital Clock

Properties Description Remarks on Dynamic Properties
Background
Color

Sets the background color.

Digital Display
Color

Sets the color of the digital
display.

Digital
Background
Color

Sets the color of the digital
background.

Frame Start Color
Sets the color for the start of
the frame.

Frame End Color
Sets the color for the end of
the frame.

The expression or dynamic script returns
the RGB values of the color.

The expression or dynamic script returns
the RGB values of the color.

LED Width Sets the width of the LED.
The expression or dynamic script returns
an int value, which is the width of the LED
on the clock.

Edge Width
Sets the width of the edge of
the clock.

The expression or dynamic script returns
an int value, which is the width of the edge
of the clock.

Rim Width
Sets the width of the outer
rim of the clock.

The expression or dynamic script returns
an int value, which is the width of the outer
rim of the clock.

18.13 Digitron

Properties Description Remarks on Dynamic Properties
Background
Color

Sets the background color for
the control.

Digital Display
Color

Sets the color of the
displayed digits.

Digit Background
Color

Sets the background color of
the displayed digits.

Frame Start Color
Sets the color for the start of
the frame.

Frame End Color
Sets the color for the end of
the frame.

The expression or dynamic script returns
the RGB values of the color.

Value Sets the data value. The expression or dynamic script returns

a float or int value, which is the displayed
value of the digitron.

Integral Digits
Sets the number of digits for
the integer.

The expression or dynamic script returns
an int value, which is the number of digits
of the integer.

LED Width Sets the width of the LED.
The expression or dynamic script returns
an int value, which is the width of the
LED.

Decimal Digits
Sets the number of decimal
digits.

The expression or dynamic script returns
an int value, which is the number of
decimal digits.

Edge Width Sets the width of the edge.
The expression or dynamic script returns
an int value, which is the width of the
edge.

Frame width Sets the width of the frame.
The expression or dynamic script returns
an int value, which is the width of the
frame.

18.14 File List

Properties Description
Remarks on Dynamic

Properties

Number of
Rows

Defines the number of rows to be
displayed in the file saved in the HMI.

The expression or dynamic
script returns an int value, which
is the number of rows to be
displayed in the file.

Redrawing
Variable

Defines regarding the update of the file
contents.

The expression or dynamic
script returns an bit value:
• 0: No action
• 1: Refresh

File Location

Files can be saved in the following

locations:

• Internal Flash Historical Data

• Internal Flash User Data

• CF Card User Data

• CF Card Historical Data

• USB Flash Drive

The designer can set the source of the

file displayed in the file list.

The expression or dynamic
script returns an int value:
• 0: FlashL Historical Data
• 1: Internal FlashL User
Data
• 2: CF Card User Data
• 3: CF Card Historical Data
• 4: USB Flash Drive

List File Corresponds to the name of the The expression or dynamic

Properties Description
Remarks on Dynamic

Properties
associated file variable.
For files of the universal class, you can
use the wildcard.

script returns a string, which is
the type of the file name.

File Name
Variable

Defines the list of file names to be
displayed.

The expression or dynamic
script returns a string, which is
the file name.

List Item Height Sets the height of each list item. No dynamic properties.

18.15 Meter

18.15.1 Disk Meter

Properties Description Remarks on Dynamic Properties

Background
Type

• Transparent: sets the
background color to transparent.
In this case, the set outer and
inner background colors do not
work.
• Non-Transparent: sets the
inner and outer background
colors to different colors.

The expression or dynamic script
returns an int value:
• 0: The background color is set to
transparent. In this case, the set outer
and inner background colors do not
work.
• 1: The inner and outer background
colors are set to different colors.

Drawing Type
Two types of meter hands are
available: fast and normal.

No dynamic properties.

Number of
Secondary
Scales

Sets the number of secondary
scales.

The expression or dynamic script
returns an int value, which is the
number of secondary scales.

Inner
Background
Color

Sets the inner background color.

Outer
Background
Color

Sets the outer background color.

Scale Color Sets the color of the scale.
Text Color Sets the color of the text.
Arc Color Sets the color of the arc.
Hand Color Sets the color of the meter hand.
Color of Normal
Interval

Sets the color of the normal
interval.

Color of Sets the color of the abnormal

The expression or dynamic script
returns the RGB values of the color.

Abnormal
Interval

interval.

Color of
Warning
Interval

Sets the color of the warning
interval.

Arc Width Sets the width of the disk arc.
The expression or dynamic script
returns an int value, which is the width
of the disk arc.

Start Angle Sets the start angle.

The expression or dynamic script
returns an int value, which is the start
point of the minimum value on the meter
disk.

End Angle Sets the end angle.

The expression or dynamic script
returns an int value, which is the start
point of the maximum value on the
meter disk.

Minimum Value Sets the minimum value.
The expression or dynamic script
returns a float value, which is the
minimum value.

Maximum Value Sets the maximum value.
The expression or dynamic script
returns a float value, which is the
maximum value.

Data Value Sets the data value.
The expression or dynamic script
returns a float value, which sets the
location of the hand.

Normal,
Warning, and
Abnormal
Interval Range

Sets the range of each interval.
The expression or dynamic script
returns a float value, which defines the
range of each interval.

18.15.2 Scale Meter

Properties Description Remarks on Dynamic Properties

Background
Type

• Transparent: sets the
background color to transparent.
In this case, the set outer and
inner background colors do not
work.
• Non-Transparent: sets the
inner and outer background
colors to different colors.

The expression or dynamic script
returns an int value:
• 0: The background color is set to
transparent. In this case, the set outer
and inner background colors do not
work.
• 1: The inner and outer background
colors are set to different colors.

Scale Type
• With Scale: displays the
scale.

No dynamic properties.

Properties Description Remarks on Dynamic Properties
• Without Scale: does not
display the scale.

Data Bar
Direction

• Vertical: displays the meter
disk vertically.
• Horizontally: displays the
meter disk horizontally.

The expression or dynamic script
returns an int value, which is the
number of the secondary scales.

Scale Location

• Left/Top: displays the meter
disk to the left (with the data bar
vertical) or to the top (with the
data bar horizontal).
• Right/Bottom: displays the
meter disk to the right (with the
data bar vertical) or to the
bottom (with the data bar
horizontal).

No dynamic properties.

Number of
Primary Scales

Sets the number of the primary
scales.

No dynamic properties.

Number of
Secondary
Scales

Sets the number of the
secondary scales.

No dynamic properties.

Background
Color

Sets the background color.

Scale Color Sets the scale color.
Text Color Sets the text color.
Background
Color of Data
Bar

Sets the background color of the
data bar.

Filling Color of
Data Bar

Sets the filling color of the data
bar.

Width of Data
Bar

Sets the width of the data bar.

The expression or dynamic script
returns the RGB values of the color.

Minimum Value Sets the minimum value.
The expression or dynamic script
returns a float value, which is the
minimum value.

Maximum Value Sets the maximum value.
The expression or dynamic script
returns a float value, which is the
maximum value.

Data Value Sets the data value.
The expression or dynamic script
returns a float value, which sets the
location of the hand.

18.16 Line Pipe Moving Control

Properties Description Remarks on Dynamic Properties

Start Color
Sets the start color of the
pipe.

End Color
Sets the end color of the
pipe.

The expression or dynamic script returns

Color of Filling
Object

Sets the color of the filling
object.

The expression or dynamic script returns the
RGB values of the color.

Length of Filling
Object

Sets the length of the
filling object.

The expression or dynamic script returns an
integer, which defines the length of the filling
object.

Moving
Direction

Sets the moving direction,
to the left or to the right.

The expression or dynamic script returns bit
signal corresponding to 0 (Left) or 1 (Right) in
the drop-down list.

Moving Status
Sets the moving status,
moving or fixed.

The expression or dynamic script returns bit
signal corresponding to 0 (Fixed) or 1
(Moving) in the drop-down list.

18.17 Indicator

Properties Description Remarks on Dynamic Properties
Color of
Indicator Light

Sets the color of the
indicator light.

The expression or dynamic script returns

Base Color
Sets the color of the
base.

No dynamic properties.

Chapter 19 System Variables

EASY defines some internal data variables which are called EASY system variables.
You can use these system variables directly during the interface configuration.

With these system variables, you can read or modify the internally-defined
parameters in the system to realize some special functions.

This chapter describes all the system variables for your reference.

19.1 Configuring System Variables

The system variables are configured in the Parameter node in the Project Manager
window, as shown in Figure 19.1.

Figure 19.1

19.1.1 Adding a System Parameter

All the system parameters are defined internally in the system. Adding a system

parameter is actually setting the initial value of a system parameter. All the system

parameters have an initial value during the system development. Changing the initial

value actually changes the value of the system parameter.

To add a system parameter, do as follows:

1) Select the Parameter node with a left click, and you will see a window as shown

in Figure 19.2.

Figure 19.2

2) In the parameter list on the right side of the window, right-click in the blank area,

and you will see a right-click menu as shown in Figure 19.3.

Figure 19.3

3) Select Add Data, and you will see the Parameter Configuration dialog box as

shown in Figure 19.4.

Figure 19.4

4) Select the database name and the real-time data name.

To select the database name and the real-time data name, click on the button

, and you will see the Browse Real-Time Database window as shown in

Figure 19.5. In this window, you can see that all the system variables in the

system database node are managed through the browser. Each parameter is

described in details.

Figure 19.5

5) Double-click on a system parameter, and the selected system parameter will be

filled to the corresponding text box automatically, as shown in Figure 19.6.

Figure 19.6

The parameter Initial Value defines the initial value of the system parameter

according to the meaning of the system parameter.

6) After all the system parameters are configured, click on OK.

The system parameter is configured (or added) successfully. You may add other

system parameters in the same way.

After you configure all the related system parameters, you will see a window as

shown in Figure 19.7.

The following sections of this chapter describe more details about the meaning of

the system parameters.

Figure 19.7

19.2 System Variables for the Interface

Database
Name

Variable Name
Data
Type

Default Value Description

system HmiLoopCount ulong

Count value of how many
times the interface refreshes.
The value of this variable is
added 1 every time the
interface refreshes.

HideMainWindow bit
• 0: Simulated operation on
PC
• 1: Operation on the HMI

• 1: Menus in the target
Windows window are hidden.
• 0: Menus in the target
Windows window are
displayed.

HmiHeartbeat bit

Heartbeat of the HMI during
operation.
The value of this variable
switches between 0 and 1
repeatedly during the interface
refreshing.
The value of this variable
switches every time the
interface refreshes.

HmidbDefCycleTime ulong 500
Cycle for the repeated
interface refreshing (unit: ms).

19.3 System Variables for Device Configuration

Database Name Variable Name
Data
Type

Default
Value

Description

system IoEnable bit 1

• 1: Device management
enabled.
• 0: Device management
disabled.

link_timeout_wnd_on bit 1

• 1: The system displays
the Communication
Timeout window
automatically when
communication timeout
occurs.
• 0: The system does not
display the
Communication Timeout
window when
communication timeout
occurs.

link_timeout_wnd_x short -1

Value of the X-axis on the
top left corner of the
Communication Timeout
window.

hmi_system_set

link_timeout_wnd_y Short -1
Value of the Y-axis on the
top left corner of the

Database Name Variable Name
Data
Type

Default
Value

Description

Communication Timeout
window.

19.4 System Variables for Function Blocks

Database
Name

Variable Name
Data
Type

Default
Value

Description

FbdEnable bit 1

• 1: Function block support enabled.
• 0: Function block support disabled.
In this case, none of the configured
function blocks will be executed.

FbdCycleTime ulong 100
Cycle for executing all function blocks
(unit: ms).

system

FbdHeartbeat bit

Heartbeat of the execution of function
blocks.
The value of this variable switches
between 0 and 1 repeatedly during
the running of the function blocks.
The value of this variable switches
every time when all function blocks
are executed in a cycle.

19.5 System Variables for the Ladder Diagram

Database
Name

Variable Name
Data
Type

Default
Value

Description

PlcEnable bit 1
• 1: Ladder diagram enabled.
• 0: Ladder diagram disabled.

PlcCycleTime ulong 100
Cycle for executing the ladder
diagram (unit: ms).

system

PlcHeartbeat bit

Heartbeat of the ladder diagram
during its operation.
The value of this variable switches
between 0 and 1 repeatedly during
the operation of the ladder diagram.
The value of this variable switches
every time the ladder diagram is
executed for a new round.

19.6 System Variables for Access Management

Database Name Variable Name
Data
Type

Default
Value

Description

cur_security_level ushort 0
Current security level of
the system.

hmi_system_set
security_level1_pass~
security_level10_pass

string Blank

Stands individually for the
password of each security
level from level 1 to level
10.
You can set the password
of each security level
according to your needs
or requirements.
If you do not set the
password of a security
level or you leave it to
blank, it means that this
security level is not in use.
The password can be set
to up to 20 characters
(including the ending
character \0 of a string)

19.7 System Variables for Printing

Database
Name

Variable Name
Data
Type

Default
Value

Description

printer_name string escp2-me1 Printer model
resolution string 360sw Printer resolution (DPI)

paper string A4 Paper type, such as A4
left_margin float 1 Left printing margin (unit: cm)
top_margin float 1 Top printing margin (unit: cm)

scaling float 1 Printing scaling printer

status long 0

Printer status:
• 0: Idle
• 1: Printing
• 2: Printer not connected
• 3: Unsupported printer type
• 4: Printing error

19.8 System Variables Related to Time

Database Name Variable Name
Data
Type

Default
Value

Description

Year ushort 0 Current date (year).
Month uchar 0 Current date (month).
Day uchar 0 Current date (day).
Hour uchar 0 Current date (hour).

Minute uchar 0 Current date (minute).
Second uchar 0 Current date (second).

system

CurDateTime ulong
From the date 1970/1/1 to
the second read of the
current time.

Year_set ushort 0 Sets the current date (year).

Month_set uchar 0
Sets the current date
(month).

Day_set uchar 0 Sets the current date (day).
Hour_set uchar 0 Sets the current date (hour).

Minute_set uchar 0
Sets the current date
(minute).

hmi_system_set

Second_set uchar 0
Sets the current date
(second).

19.9 System Variables for LCD Settings

Database Name Variable Name
Data
Type

Default
Value

Description

ScreenWidth ushort 640
Width of the screen pixels of the
HMI

system
ScreenHeight ushort 480

Height of the screen pixels of the
HMI

brightness uchar 100 LCD backlight value (range: 0-100)

hmi_system_set
blankdelaysec ushort 0

Screensaver delay time (unit:
seconds) (0 means to disable the
screensaver.)

19.10 System Variables for Serial Port Communication

Database Name Variable Name
Data
Type

Default
Value

Description

com2_is_rs232 bit 0
• 1: Serial port 2 works as RS232.
• 0: Serial port 2 works as RS485.

hmi_system_set
com3_is_rs232 bit 0

• 1: Serial port 3 works as RS232.
• 0: Serial port 3 works as RS485.

19.11 System Variables for Touch Alarm

Database Name Variable Name
Data
Type

Default
Value

Description

bell_on_click bit 0

If you set the value of this
variable to 1, an alarm will
be triggered automatically
when you click on the touch
screen.

bell_loop_count ulong 1
Defines how many times an
alarm is triggered.

hmi_system_set

bell_freq ulong 10
Defines how long the alarm
lasts.

19.12 System Variables for the Keyboard

Database
Name

Variable Name
Data
Type

Default
Value

Description

NumberMinValue float 0
Minimum value to be entered
from the digital keyboard.

NumberMaxValue float 100
Maximum value to be entered
from the digital keyboard.

KeyboardBuffer string Buffer for keyboard input

Prompt string
Prompt information for keyboard
input.

NumberKeyboardWindow string

Name of the window for digital
keyboard input.
The internal keyboard is used
when the value of this variable is
set to blank.

PasswordChar char 0

Password characters.
No password is available when
the value of this variable is set to
0.

IsEnterPressed bit 0
The value 1 is returned when you
press down the Enter key.

syskeyboard

TextKeyboardWindow string Name of the window for text

keyboard input.
The internal keyboard is used
when the value of this variable is
set to blank.

19.13 System Variables for Links

Database Name Variable Name
Data
Type

Default
Value

Description

link_timeout_wnd_on bit 1

• 1: The Communication
Timeout window is
displayed when timeout
occurs during the
communication over the
link.
• 0: The Communication
Timeout window is not
displayed when timeout
occurs during the
communication over the
link.

link_timeout_wnd_x short -1

Location of the start point
on the X-axis in the
Communication Timeout
window.
The default value -1 means
that the Communication
Timeout window will be
centrally aligned.

hmi_system_set

link_timeout_wnd_y short -1

Location of the start point
on the Y-axis in the
Communication Timeout
window.
The default value -1 means
that the Communication
Timeout window will be
centrally aligned.

19.14 System Variables for the Disk Space

Database Name Variable Name
Data
Type

Default
Value

Description

hmi_system_set
flash_free_disk_space ulong Size of free space of the

internal flash (unit: Kbyte).

cf_free_disk_space ulong
Size of free space of the
CF card (unit: Kbyte)

low_space_wnd_on bit 1

• 1: A prompt window will
be displayed when the
disk does not have
enough space.
• 0: No prompt window
will be displayed when the
disk does not have
enough space.

low_space_text string

Prompt information to be
displayed when the disk
does not have enough
space.

19.15 System Variables for the Scroll Bar

Database Name Variable Name
Data
Type

Default
Value

Description

HScrollSize ulong 0

Width of the horizontal scroll
bar.
The system internal width is
used when the value of this
variable is 0.

hmi_system_set

VScrollSize ulong 0

Width of the vertical scroll
bar.
The system internal width is
used when the value of this
variable is 0.

Chapter 20 System Functions

EASY provides some internally defined system functions. With these function, you
can realize specific system functions, such as window display, historical data process,
printing, and script commissioning.

Besides, you can also call these system functions directly during the interface
configuration.

This chapter lists all the system functions supported by EASY.

20.1 System Functions for the Interface

20.1.1 hmi_window_show

Original Function: int hmi_window_show(char *window_name)

Function Description: To show a specified window.

Return Values: 0 Failed

 1 Successful

Parameters: window_name: Name of the target window you want to display.

Example: hmi_window_show("test")

20.1.2 hmi_window_hide

Original Function: int hmi_window_hide(char *window_name)

Function Description: To close a specified window.

Return Values: 0 Failed

 1 Successful

Parameters: window_name: Name of the target window you want to close.

Example: hmi_window_hide("test")

20.1.3 hmi_window_show_modal

Original Function: int hmi_window_show_modal(char *window_name)

Function Description: To display a modal dialog box.

Return Values: 0 Failed

 1 Successful

Parameters: window_name: Name of a window.

Example: hmi_window_show_modal("test")

20.1.4 hmi_window_exit_modal

Original Function: int hmi_window_exit_modal(char *window_name)

Function Description: To exit the Modal dialog box. Call this function when you

want to exit a modal dialog box

Return Values: 0 Failed

 1 Successful

Parameters: window_name: Name of a wiondow.

Example: hmi_window_exit_modal("test")

20.1.5 data_input_window

Original Function: int data_input_window(char *varname, char *caption,

double minvalue, double maxvalue, int dec_num)

Function Description: Function for data input. When you call this function, the

Data Input window will be displayed. The data you enter in this

window will be assigned as the value for the parameter varname.

Return Values: 0 Failed

 1 Successful

Parameters: varname: Name of a variable. The data you enter in the Data Input

window will be assigned as the value for this parameter.

 caption: Prompt information to be displayed as the title of the Data

Input window.

 minvalue: Minimum value allowed for the data entered.

 maxvalue: Maximum value allowed for the data entered.

 dec_num: Number of decimals.

Example: data_input_window("test.data", "test", 0, 100, 2)

20.1.6 data_input_window_pwd

Original Function: int data_input_window_pwd(char *varname, char *caption,

double minvalue, double maxvalue, int dec_num, int passwd)

Function Description: Function for data input (password display option

available). When you call this function, the Data Input window will be

displayed. The data you enter in this window will be assigned as the

value for the parameter varname.

Return Values: 0 Failed

 1 Successful

Parameters: varname: Name of a variable. The data you enter in the Data Input

window will be assigned as the value for this parameter.

 caption: Prompt information to be displayed as the title of the Data

Input window.

 minvalue: Minimum value allowed for the data entered.

 maxvalue: Maximum value allowed for the data entered.

 dec_num: Number of decimals.

 passwd: 1: Password Display; 0: Normal Display.

Example: data_input_window_pwd("test.data", "test", 0, 100, 2, 1)

20.1.7 text_input_window

Original Function: int text_input_window(char *varname, char *caption, int

passwd)

Function Description: Function for text input. When you call this function, the

Text Input window will be displayed. The text you enter in this

window will be assigned as the value for the parameter varname.

Return Values: 0 Failed

 1 Successful

Parameters: varname: Name of a variable. The text you enter in the Text Input

window will be assigned as the value for this parameter.

 caption: Prompt information to be displayed as the title of the Text Input

window.

 passwd: 1: Password Display; 0: Normal Display.

Example: text_input_window("test.data", "test", 1)

20.1.8 msgbox

Original Function: int msgbox(char *caption, char *text, int type)

Function Description: Function for displaying a message box.

Return Values: MSG_IDOK: You can click on the OK button.

 MSG_IDCANCEL: You can click on the Cancel button.

 MSG_IDABORT: You can click on the Abort button.

 MSG_IDRETRY: You can click on the Retry button.

 MSG_IDIGNORE: You can click on the Ignore button.

 MSG_IDYES: You can click on the Yes button.

 MSG_IDNO: You can click on the No button.

Parameters: caption: Title of a window.

 text: Message content.

 type: Type of a message box, valued as follows:

 MSG_MB_OK: The OK button is displayed.

 MSG_MB_OKCANCEL: The OK and Cancel buttons are

displayed.

 MSG_MB_YESNO: The Yes and No buttons are displayed.

 MSG_MB_RETRYCANCEL: The Retry and Cancel buttons are

displayed.

 MSG_MB_ABORTRETRYIGNORE: The Abort, Retry and

Ignore buttons are displayed.

 MSG_MB_YESNOCANCEL: The Yes, No and Cancel buttons

are displayed.

 MSG_MB_ICONSTOP: The Stop icon is displayed.

 MSG_MB_ICONQUESTION: The Question icon is displayed.

 MSG_MB_ICONEXCLAMATION: The Exclamation icon is

displayed.

 MSG_MB_ICONINFORMATION: The Information icon is

displayed.

 MSG_MB_DEFBUTTON1: The first button is defined as default.

 MSG_MB_DEFBUTTON2: The second button is defined as

default.

 MSG_MB_DEFBUTTON3: The third button is defined as default.

Example: msgbox("Error", "Open file failed", MSG_MB_OK)

20.1.9 hmi_center_window

Original Function: int hmi_center_window(char *window_name)

Function Description: Function for displaying the window in the center.

Return Values: 0 Failed

 1 Successful

Parameters: window_name: Name of a window.

Example: hmi_center_window("test")

20.2 System Functions for Parameters

20.2.1 rtdb_param_mem_to_rtdb

Original Function: int rtdb_param_mem_to_rtdb()

Function Description: To copy the data from the HMI memory to the real-time

database as the value of parameters.

Return Values: 0 Failed

 1 Successful

Parameters: N/A

Example: rtdb_param_mem_to_rtdb()

20.2.2 rtdb_param_rtdb_to_mem

Original Function: int rtdb_param_rtdb_to_mem()

Function Description: To copy the value of parameters from the real-time

database to the HMI memory.

Return Values: 0 Failed

 1 Successful

Parameters: N/A

Example: rtdb_param_rtdb_to_mem()

20.2.3 sys_save_param

Original Function: int sys_save_param()

Function Description: To save parameter data to devices.

Return Values: 0 Failed

 1 Successful

Parameters: N/A

Example: sys_save_param()

20.3 System Functions for Script Commissioning

20.3.1 debug_set_ip

Original Function: void debug_set_ip(const char *ip)

Function Description: To set the IP address of the host on which the

Commissioning Output Background tool is running.

Return Values: N/A

Parameters: ip: IP address of the host on which the Commissioning Output

Background tool is running.

Example: debug_set_ip("127.0.0.1");

20.3.2 debug_printf

Original Function: void debug_printf(const char *format, …)

Function Description: To export the printing commissioning information to the

commissioning host. Use this function in the same way as the library

function printf in the standard C language.

Return Values: N/A

Parameters: format: String for format control. Same as for the library function

printf in the standard C language.

 …: Optional parameter. Same as for the library function printf in the

standard C language.

Example: debug_printf("i=%d\n", i);

20.4 System Functions for Real-Time Trend Curves

20.4.1 rtdb_log_save_file

Original Function: int rtdb_log_save_file(char *logname, int save_dir, char

*filename)

Function Description: To save a real-time data record into a file.

Return Values: 0 Failed

 1 Successful

Parameters: logname: Name of a real-time data record.

 save_dir: 0: HMI internal flash; 1: CF card.

 filename: Name of the file for saving the real-time data record.

Example: rtdb_log_save_file("real", 0, "recfile.log")

20.4.2 rtdb_get_log_data

Original Function: int rtdb_get_log_data(char *logname, char *dataname, u8

*buf, int log_number)

Function Description: To obtain data from the current real-time data record.

Return Values: 0: Failed

 Other values: Actual volume of data collected.

Parameters: logname: Name of a real-time data record.

 dataname: Name of the data variable for which data is to be collected.

 buf: Buffer for the collected data. You need to assign space for the

butter in advance.

 log_number: Volume of data to be collected.

Example: rtdb_get_log_data("real", "test.data1", buf, 100)

20.4.3 rtdb_get_log_data_from_file

Original Function: int rtdb_get_log_data_from_file(int file_path, char

*filename, char *dataname, u8 *buf, int log_number, int start_pt)

Function Description: To obtain data from the saved real-time record file.

Return Values: 0: Failed

 Other values: Actual volume of data collected.

Parameters: file_path: 0: HMI internal flash; 1: CF card.

 filename: Name of the file where the real-time data record is saved.

 dataname: Name of the data variable for which data is to be collected.

 buf: Buffer for the collected data. You need to assign space for the

butter in advance.

 log_number: Volume of data to be collected.

 start_pt: Start point from where data is collected.

Example: rtdb_get_log_data_from_file(0, " recfile.log ", "test.data1", buf, 100, 0)

20.4.4 rtdb_log_save_usr_file

Original Function: int rtdb_log_save_usr_file(usr_log_file_info_t *usr_log,

int save_dir,char *filename)

Function Description: To save a user record of data into a file.

Return Values: 0: Failed

 1: Saved Successfully

Parameters: usr_log: Name of the user record.

 save_dir: Directory for saving the user record file.

 0: File saved to the HMI internal flash.

 1: File saved to the CF card.

 Filename: Name of the file for saving the user record.
Example: rtdb_log_save_usr_file("test ","0 ", "testfile")

20.5 System Functions for Historical Data Processing

20.5.1 sys_history_download

Original Function: int sys_history_download()

Function Description: Function for downloading historical data; to copy

historical data from the HMI internal flash or the CF card to a thumb

drive.

Return Values: 0 Failed

 1 Successful

Parameters: N/A

Example: sys_history_download()

20.5.2 history_query_all

Original Function: int history_query_all(char *query_var_name)

Function Description: To query historical data records from all historical

databases by the specified fields. For details, see section 9.5.1

Inquiring Historical Data by Specified Fields.

Return Values: 0: Failed

 1: Successful

Parameters: query_var_name: Name of the historical data to which the field to be

searched is associated.

Example: history_query_all("test.query_data1")

20.5.3 history_query_data

Original Function: int history_query_data(char *query_var_name, char

*history_name)

Function Description: To query historical data records from the defined

historical database by the specified fields. For details, see section

9.5.1 Inquiring Historical Data by Specified Fields.

Return Values: 0: Failed

 1: Successful

Parameters: query_var_name: Name of the historical data with which the field to

be searched is associated.

 history_name: Name of the historical data record.

Example: history_query_data("test.query_data1", "his")

20.5.4 hislist_query_data

Original Function: int hislist_query_data(char *window_name, char

*widget_name)

Function Description: To query the values of the various fields of the record

currently selected in the Historical List control.

Return Values: 0: Failed

 1: Successful

Parameters: window_name: Name of the window where the Historical List control

is located.

 widget_name: Name of the graphic component of the Historical List

control.

Example: history_query_data("main_pic", "hislist1")

20.5.5 hislist_delete_data

Original Function: int hislist_delete_data(char *window_name, char

*widget_name)

Function Description: To delete the currently selected record from the

Historical List control.

Return Values: 0: Failed

 1: Successful

Parameters: window_name: Name of the window where the Historical List control

is located.

 widget_name: Name of the graphic component of the Historical List

control.

Example: history_delete_data("main_pic", "hislist1")

20.6 System Function for Alarming

20.6.1 alarm_confirm

Original Function: int alarm_confirm(char *window_name, char

*widget_name)

Function Description: To confirm the alarm record currently selected in the

Alarm Window control.

Return Values: 0: Failed

 1: Successful

Parameters: window_name: Name of the window where the Alarm Window

control is located.

 widget_name: Name of the graphic component in the alarm window.

Example: alarm_confirm("main_pic", "alarmwnd1")

20.7 System Function for Printing

20.7.1 print_window

Original Function: int print_window(char *window_name, int x1, int y1, int x2,

int y2)

Function Description: To print the selected area from the currently displayed

window.

Return Values: 1: Successful

 Other values: Failed

Parameters: window_name: Name of the window to be printed.

 x1: X-axis value of the top left corner of the area to be printed.

 y1: Y-axis value of the top left corner of the area to be printed.

 x2: X-axis value of the bottom right corner of the area to be printed.

 y2: Y-axis value of the bottom right corner of the area to be printed.

20.8 System Functions for Real-Time Database Read/Write

20.8.1 rtdb_set_data_value_by_name

Original Function: int rtdb_set_data_value_by_name(char *dbname,char

*dataname,void *data_value)

Function Description: You can use this function in the expansion module to

write the data in the real-time database. This function sets the value

of the data in the real-time database.

Return Values: 0 Failed

 1 Successful

Parameters: dbname: Name of a database.

 Dataname: Name of a data.

 data_value: Value of a data. The value of a data varies according to the

data type. For example, the bit data has only 1 byte, the

long data has 4 bytes, and the length of the string data is

user-defined.

Example:

float value=1.0;

rtdb_set_data_value_by_name(“test”,”Ldata”,&value);

The above function sets the value of the data Ldata in the database

test to 1.0.

20.8.2 rtdb_get_data_value_by_name

Original Function: int rtdb_get_data_value_by_name(char *dbname,char

*dataname,void *data_value)

Function Description: You can use this function in the expansion module to

read the data in the real-time database. This function obtains the

value of the data from the real-time database.

Return Values: 0 Failed

 1 Successful

Parameters: dbname: Name of a database.

 dataname: Name of a data.

 data_value: Value of a data. The parameter data_value requires you to

assign the space in advance. For example, you need to

assign 1 byte of space for the bit data and 4 bytes of space

for the long data.

Example:

float value;

rtdb_get_data_value_by_name(“test”,”Ldata”,&value);

The above function obtains the current value of the data Ldata from

the database test and saves the value to the variable value.

20.9 System Functions for Serial Port Communication

20.9.1 serial_open

Original Function: int serial_open(const char *device,int baud,int parity,int

data_bits,int stop_bits,int timeout)

Function Description: To open a serial port.

Return Values: -1 Failed

 Other value Serial port handle

Parameters: device: Serial port name, for example, COM1, COM2, or COM3.

 baud: Baud rate of the serial port. At present, the supported baud rates

are 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200.

 parity: Parity check mode, including No Parity Check

(SERIAL_PARITY_NO), Odd Parity Check

(SERIAL_PARITY_ODD), and Even Parity Check

(SERIAL_PARITY_EVENT).

 data_bits: Number of data bits, including 5, 6, 7, and 8.

 stop_bits: Number of stop bits, including 1 and 2.

 timeout: Duration of communication timeout (unit: ms).

Example: serial_open("COM1", 9600, SERIAL_PARITY_NO, 8, 1, 100)

20.9.2 serial_close

Original Function: int serial_close(int serial_id)

Function Description: To close a serial port.

Return Values: 0 Failed

 1 Successful

Parameters: serial_id: Serial port handle (returned by the function serial_open)

Example: serial_close(1)

20.9.3 serial_flush

Original Function: int serial_flush(int serial_id, int flag)

Function Description: To clear the buffering data of a serial port.

Return Values: 0 Failed

 1 Successful

Parameters: serial_id: Serial port handle (returned by the function serial_open)

 flag: Flush flag.

SERIAL_FLUSH_TX: clears the currently unsent data.

SERIAL_FLUSH_RX: clears the data in the receiving buffer.

SERIAL_FLUSH_TX|SERIAL_FLUSH_RX: clears the data in

both the sending and receiving buffers.

Example: serial_flush(1, SERIAL_FLUSH_TX|SERIAL_FLUSH_RX)

20.9.4 serial_write

Original Function: int serial_write(int serial_id, char *buf, size_t size)

Function Description: To send data to a serial port.

Return Values: -1 Failed

 Other value Actual length of the data sent

Parameters: serial_id Serial port handle (returned by the function serial_open)

 buf Buffer for keeping the data to be sent.

 size: Length of the data to be sent (unit: byte).

Example: serial_write(1,buf, sizeof(buf))

20.9.5 serial_read

Original Function: int serial_read(int serial_id, char *buf, size_t size)

Function Description: To receive data through a serial port.

Return Values: -1 Failed

 Other value Actual length of the data received

Parameters: serial_id: Serial port handle (returned by the function serial_open)

 buf: Buffer for keeping the received data.

 size: Size of the receiving buffer (unit: byte).

Example: serial_read(1,buf, sizeof(buf))

20.9.6 serial_poll

Original Function: int serial_poll(int serial_id, int timeout)

Function Description: To check whether there is data to read at a serial port.

Return Values: -1 Error

 0 Timeout, which meas no data is received during the

timeout period

 1 Data available to be read at the serial port

Parameters: serial_id: Serial port handle (returned by the function serial_open)

 Timeout: For inquiring the timeout duration (unit: ms)

Example: serial_poll(1,100)

20.10 System Functions for File Directory

20.10.1 hmi_get_usr_data_dir

Original Function: const char * hmi_get_usr_data_dir()

Function Description: To get an available file directory for saving user-defined

files.

Return Value: Name of the available file directory.

Parameters: N/A

Example: hmi_get_usr_data_dir()

20.10.2 hmi_get_cfcard_dir

Original Function: const char *hmi_get_cfcard_dir()

Function Description: To get the CF card directory.

Return Value: Name of the CF card directory.

Parameters: N/A

Example: hmi_get_cfcard_dir()

20.10.3 hmi_get_usb_dir

Original Function: const char *hmi_get_cfcard_dir()

Function Description: To get the directory for your thumb drive.

Return Values: Name of the directory for your thumb drive.

Parameters: N/A

Example: hmi_get_usb_dir()

20.10.4 filelist_delete_file

Original Function: int filelist_delete_file(char *window_name, char

*widget_name)

Function Description: To delete the currently selected file from the file list

control component.

Return Values: 0 Failed

 1 Successful

Parameters: window_name: Name of the window where the file list control

component is located.

 widget_name: Name of the file list control component.

Example: filelist_delete_file("OpenLogFile","filelist1")

20.10.5 sys_mount_usb_disk

Original Function: int sys_mount_usb_disk()

Function Description: To mount the thrum drive.

Return Values: 0 Failed

 1 Mounting successful

Parameters: N/A

Example: sys_mount_usb_disk()

20.10.6 sys_unmount_usb_disk

Original Function: int sys_unmount_usb_disk()

Function Description: To unmount the thumb drive.

Return Values: 0 Failed

 1 Unmounting successful

Parameters: N/A

Example: sys_unmount_usb_disk()

20.10.7 sys_copy_file_to_usb_disk

Original Function: int sys_copy_file_to_usb_disk(char *filename, int

automount, int file_dir)

Function Description: To copy files from the internal flash or CF card to a

thumb drive.

Return Values: 0 Failed

 1 Copying successful

Parameters: filename: Name of the file to be copied.

Automount: Status of the thumb drive.

1: Automatic mounting or unmounting the thumb drive

0: Mounting the thumb drive by calling the function

sys_mount_usb_disk.

file_dir: Directory for saving the file.

0: Internal flash user data directory

1: CF card

2: Internal flash historical data directory

3: CF card historical data directory

Example: sys_copy_file_to_usb_disk(“file1”,1,0)

20.10.8 sys_copy_file_from_usb_disk

Original Function: int sys_copy_file_from_usb_disk(char *filename, int

automount, int file_dir)

Function Description: To copy files from the thumb drive to the internal flash or

CF card.

Return Values: 0 Failed

 1 Copying successful

Parameters: filename: Name of the file to be copied.

automount: Status of the thumb drive.

1: Automatic mounting or unmounting the thumb drive

0: Mounting the thumb drive by calling the function

sys_mount_usb_disk.

file_dir: Directory for saving the file.

0: Internal flash user data directory

1: CF card

2: Internal flash historical data directory

3: CF card historical data directory

Example: sys_copy_file_from_usb_disk(“file1”,1,0)

20.11 System Functions for Time and Date

20.11.1 setsystime

Original Function: int setsystime(int year, int month, int day, int hour, int minu,

int sec)

Function Description: To set the system time.

Return Values: 1 Successful

 0 Failed

Parameters: year: Year

 month: Month

 day: Day

 hour: Hour

 minu: Minute

 sec: Second

Example: setsystime(2008, 10, 11, 10, 30, 10)

20.11.2 gettimeinfo

Original Function: int gettimeinfo (unsigned long cur_datetime, int *year, int

*month, int *day, int *hour, int *minu, int *sec)

Function Description: To convert the current system time displayed in seconds

(for example, the system variable system.CurDateTime) to the time

displayed with year, month, day, hour, minute, and second.

Return Values: 1 Successful

 0 Failed

Parameters: cur_datetime: Current time displayed in seconds.

year: Year

 month: Month

 day: Day

 hour: Hour

 minu: Minute

 sec: Second

Example: int year, month, day, hour, minu, sec;

getsystime($system.CurDateTime, &year, &month, &day, &hour, &minu,

&sec)

20.11.3 datetime_add

Original Function: int datetime_add (int *year, int *month, int *day, int *hour,

int *minu, int *sec, int add_seconds)

Function Description: To add certain seconds on top of the current time.

Return Values: 1 Successful

 0 Failed

Parameters: year: Year after the adding.

 month: Month after the adding

 day: Day after the adding

 hour: Hour after the adding

 minu: Minute after the adding

 sec: Second after the adding

 add_seconds: Number of seconds added

Example: int year, month, day, hour, minu, sec;

datatime_add(&year, &month, &day, &hour, &minu, &sec, 60)

20.12 System Functions for the Window

20.12.1 touch_adjust

Original Function: int touch_adjust()

Function Description: To display the window for adjusting the touch screen.

Return Values: 1 Successful

 0 Failed

Parameters:

Example: touch_adjust()

20.12.2 hmi_sys_set_wnd

Original Function: int hmi_sys_set_wnd()

Function Description: To display the System Setting window.

Return Values: 1 Successful

 0 Failed

Parameters:

Example: hmi_sys_set_wnd()

20.12.3 hmi_sys_set_wnd

Original Function: int sys_set_time_wnd()

Function Description: To display the window for adjusting the time.

Return Values: 1 Successful

 0 Failed

Parameters:

Example: sys_set_time_wnd()

20.13 Other System Functions

20.13.1 sys_shutdown

Original Function: int sys_shutdown(int type)

Function Description: To shut down the system.

Return Values: 1 Successful

 0 Failed

Parameters: type: 2-Shut down the system; 3-Shut down and then restart the

system.

Example: sys_shutdown(2)

20.13.2 prog_upgrade

Original Function: int prog_upgrade()

Function Description: To upgrade the system or the user program through the

thumb drive.

Return Values: 1 Successful

 0 Failed

Parameters:

Example: prog_upgrade()

20.13.3 sys_sleep

Original Function: void sys_sleep(unsigned long ms)

Function Description: To put the program to sleep for a period of time.

Return Values:

Parameters: ms: Number of milliseconds for putting the program to sleep.

Example: sys_sleep(100)

